1
|
Wun SJ, Tan L, Lonhienne TG, Low YS, Josh P, Kuo A, Smith MT, Gao Y, Pierens GK, Guddat LW, West NP. Florasulam Is a Potent Inhibitor of Mycobacterium tuberculosis Acetohydroxyacid Synthase and Possesses In Vivo Antituberculosis Activity. ACS Infect Dis 2025; 11:1180-1189. [PMID: 40214257 DOI: 10.1021/acsinfecdis.4c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Tuberculosis (TB) remains as a leading cause of morbidity and mortality, accounting for ∼1.3 million fatalities worldwide per year. There are two major concerns: (i) the rise in the number of multi- and extensively drug-resistant strains of TB and (ii) the significant side-effects related to the use of many of the current therapies to treat drug-resistant and drug-sensitive TB alike. Thus, there is an ongoing need to discover new drugs and drug targets to combat this disease. Here, acetohydroxyacid synthase (AHAS), the first enzyme in the branched-chain amino acids (BCAAs) biosynthesis pathway, is comprehensively investigated as such a drug target. All five chemical classes of plant AHAS inhibitors, established as commercial herbicides, were assessed as leads. Members of the triazolopyrimidine family (e.g., metosulam, penoxsulam, and florasulam) are the most potent inhibitors of Mycobacterium tuberculosis AHAS (MtbAHAS) with Ki values as low as 20 nM. These compounds also exhibit the property of accumulative time-dependent inhibition, a feature that appears to be crucial for herbicidal activity and more generally for biocidal activity. Of these, the anti-TB activity of florasulam was the most effective, with an MIC of 500 nM against virulent Mtb grown in culture. This compound is also effective in killing intramacrophage Mtb and reduces bacterial load, as compared to vehicle-only by 13-fold in the lungs of mice infected with Mtb. Thus, triazolopyrimidines as AHAS inhibitors, and in-particular florasulam, represents a promising new class of leads for anti-TB drug development.
Collapse
Affiliation(s)
- Shun Jie Wun
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Thierry G Lonhienne
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yu Shang Low
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Peter Josh
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andy Kuo
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Maree T Smith
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yanhua Gao
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gregory K Pierens
- UQ Centre for Advanced Imaging, St Lucia, Queensland 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
2
|
Niu Y, Wu Z, Hu Q, Wu Y, Jiang Q, Yang X. Discovery of acetohydroxyacid synthase inhibitors as anti-tuberculosis lead compounds from natural products. Bioorg Med Chem 2025; 118:118041. [PMID: 39708691 DOI: 10.1016/j.bmc.2024.118041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
Acetohydroxy acid synthase (AHAS) is a key enzyme that catalyzes the synthesis of branched-chain amino acids, which is indispensable for the survival and growth of Mycobacterium tuberculosis (Mtb). Aim to discover new AHAS inhibitors from natural products, here we performed computer assistant target-based screening for Mtb-AHAS inhibitors using Discovery Studio on TCMSP and SELLECK libraries. Mtb-AHAS structure was first simulated and verified for docking, and 80 compounds with top LIBDOCK and CDDOCK scores were obtained. By experimental verification, four compounds namely Salvianolic acid A, Embelin, Celastrol and Wushanicaritin showed inhibition potency against Mtb-AHAS with IC50 ranging from 805.5 nM-32.36 μM. The most potential inhibitor Celastrol exhibited bacteriostatic activity for both Mycobacterium smegmatis and Mycobacterium tuberculosis with MIC of 62.5 μM and 80 μM, respectively. This study revealed that Celastrol is the potential Mtb-AHAS inhibitor as an anti-tuberculosis lead compound.
Collapse
Affiliation(s)
- Yanhong Niu
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China
| | - Zhili Wu
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China
| | - Qianfang Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuchen Wu
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China
| | - Qihua Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xiaolan Yang
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, No. 1, Yixueyuan Road, Yuzhong Dist, Chongqing 400016, China.
| |
Collapse
|
3
|
Stankiewicz-Kosyl M, Wińska-Krysiak M, Wrochna M, Haliniarz M, Marcinkowska K. Regional diversity of the ALS gene and hormesis due to tribenuron-methyl in Centaurea cyanus L. Sci Rep 2024; 14:25197. [PMID: 39448670 PMCID: PMC11502813 DOI: 10.1038/s41598-024-76345-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Centaurea cyanus L. is a common field weed in Eastern Europe but only in Poland biotypes of this species with resistance to acetolactate synthase (ALS) inhibitors have been confirmed. This phenomenon is constantly developing and spreading to consecutive regions of Poland. This study aimed to assess the response of selected Polish C. cyanus populations to tribenuron-methyl and to analyse the genetic variability of the ALS gene of C. cyanus populations resistant to ALS inhibitors. Between 2017 and 2021, 13 seed samples were collected from eastern Poland and a dose-response study with tribenuron-methyl was performed. Eleven populations resistant to tribenuron-methyl were identified. All populations from this study as well as 6 additional resistant populations characterised in the previous dose-response studies were subjected to molecular analysis of the ALS gene. Target-site resistance due to mutations P197S, P197Q, P197T and P197A were identified in 8 populations from Warmia-Masuria and Podlaskie provinces. This is the first case of target-site resistance (TSR) in C. cyanus confirmed by sequencing of the ALS gene. Moreover in some resistant plants, ten changes in the amino acid ALS sequence were identified in comparison to those in the susceptible ones. In none of the populations were all mutations detected in the same individual. The highest frequency of mutations was detected in Warmia-Masuria province. Some C. cyanus populations resistant to ALS inhibitors showed hormesis effect concerning shoot fresh weight after tribenuron-methyl treatment. Stimulation due to half the recommended dose of tribenuron-methyl was the highest and the difference between untreated and treated plants was statistically significant in two populations from Warmia-Masuria and in one from Podlaskie province.
Collapse
Affiliation(s)
- Marta Stankiewicz-Kosyl
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, Warsaw, 02-776, Poland.
| | - Marzena Wińska-Krysiak
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, Warsaw, 02-776, Poland.
| | - Mariola Wrochna
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Małgorzata Haliniarz
- Department of Herbology and Plant Cultivation Techniques, University of Life Sciences in Lublin, Akademicka 13, Lublin, 20-950, Poland
| | - Katarzyna Marcinkowska
- Department of Weed Science and Plant Protection Technique, Institute of Plant Protection-National Research Institute, Węgorka 20, Poznań, 60-318, Poland
| |
Collapse
|
4
|
Koreki A, Michel S, Lebeaux C, Trouilh L, Délye C. Prevalence, spatial structure and evolution of resistance to acetolactate-synthase (ALS) inhibitors and 2,4-D in the major weed Papaver rhoeas (L.) assessed using a massive, country-wide sampling. PEST MANAGEMENT SCIENCE 2024; 80:637-647. [PMID: 37752099 DOI: 10.1002/ps.7791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Corn poppy (Papaver rhoeas) is the most damaging broadleaf weed in France. Massively parallel amplicon sequencing was used to investigate the prevalence, mode of evolution and spread of resistance-endowing ALS alleles in 422 populations randomly sampled throughout poppy's range in France. Bioassays were used to detect resistance to the synthetic auxin 2,4-D in 43 of these populations. RESULTS A total of 21 100 plants were analysed and 24 mutant ALS alleles carrying an amino-acid substitution involved or potentially involved in resistance were identified. The vast majority (97.6%) of the substitutions occurred at codon Pro197, where all six possible single-nucleotide non-synonymous substitutions plus four double-nucleotide substitutions were identified. Changes observed in the enzymatic properties of the mutant ALS isoforms could not explain the differences in prevalence among the corresponding alleles. Sequence read analysis showed that mutant ALS alleles had multiple, independent evolutionary origins, and could have evolved several times independently within an area of a few kilometres. Finally, 2,4-D resistance was associated with mutant ALS alleles in individual plants in one third of the populations assayed. CONCLUSION The intricate geographical mosaic of mutant ALS alleles observed is the likely result of the combination of huge population sizes, multiple independent mutation events and human-mediated spread of resistance. Our work highlights the ability of poppy populations and individual plants to accumulate different ALS alleles and as yet unknown mechanisms conferring resistance to synthetic auxins. This does not bode well for the continued use of chemical herbicides to control poppy. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Lidwine Trouilh
- Plateforme GeT-Biopuces, TBI, Université de Toulouse, CNRS, INRAE, INSA, Genotoul, Toulouse, France
| | | |
Collapse
|
5
|
Ustun R, Chalmers G, Tehrani D, Uzun B. Computational molecular explanation of Soybean AHAS resistance from P197S mutation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107782. [PMID: 37315349 DOI: 10.1016/j.plaphy.2023.107782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
The first enzyme in the pathway involving branched-chain amino is acetohydroxyacid synthase (AHAS, E.C. 2.2.1.6), which is inhibited by five commercial herbicide families. In this work a computational study of a point mutation of Proline-197-Serine of the Soybean AHAS enzyme, which was obtained by mutagenesis, explains the latter's S197 resistance to the commonly used Chlorsulfuron. Using protein-ligand docking and large-scale sampling and distributions from AlphaFold-generated the resistant and susceptible soybean AHAS protein structure. The computational approach here is scaled to screen for mutation probabilities of protein binding sites, similar to screening compounds for potential hits in therapeutic design using the docking software. P197 and S197 AHAS structures were found to be different even if only one amino acid was changed. The non-specific distribution of bindings in the S197 cavity after the P197S change has been rigorously calculated by RMSD analysis that it would require x20 more concentrations to fill the P197 site by the same amount. There is no previously performed detailed chlorsulfuron soybean P197S AHAS binding calculation. In the herbicide site of AHAS, several amino acids interact - a computational study could elucidate the optimal choice of point mutations for herbicidal resistance either individually or collectively by mutations one at a time and analyzing the effects with a set of herbicides individually. With a computational approach, enzymes involved in crop research and development could be analyzed more quickly, enabling faster discovery and development of herbicides.
Collapse
Affiliation(s)
- Rustem Ustun
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye.
| | - Gordon Chalmers
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Daniel Tehrani
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Bulent Uzun
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
| |
Collapse
|
6
|
Cheng Y, Lonhienne T, Garcia MD, Williams CM, Schenk G, Guddat LW. Crystal Structure of the Commercial Herbicide, Amidosulfuron, in Complex with Arabidopsis thaliana Acetohydroxyacid Synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5117-5126. [PMID: 36943718 DOI: 10.1021/acs.jafc.2c08528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Amidosulfuron (AS) is from the commercial sulfonylurea herbicide family. It is highly effective against dicot broad-leaf weeds. This herbicide targets acetohydroxyacid synthase (AHAS), the first enzyme in the branched chain amino acid biosynthesis pathway. Here, we have determined the crystal structure of AS in complex with wildtype Arabidopsis thaliana AHAS (AtAHAS) and with the resistance mutant, S653T. In both structures, the cofactor, ThDP, is modified to a peracetate adduct, consistent with time-dependent accumulative inhibition. Compared to other AHAS-inhibiting herbicides of the sulfonylurea family, AS lacks a second aromatic ring. The replacement is an aryl sulfonyl group with a reduced number of interactions with the enzyme and relatively low affinity (Ki = 4.2 μM vs low nM when two heteroaromatic rings are present). This study shows that effective herbicides can have a relatively high Ki for plant AHAS but can still be a potent herbicide provided accumulative inhibition also occurs.
Collapse
Affiliation(s)
- Yan Cheng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Thierry Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Mario D Garcia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Gerard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
7
|
Jiang H, Wan H, Cui H. Structure characterization of Imidazolinone–Fe(II) complex by using multiple analytical and spectroscopic methods. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Structural basis of resistance to herbicides that target acetohydroxyacid synthase. Nat Commun 2022; 13:3368. [PMID: 35690625 PMCID: PMC9188596 DOI: 10.1038/s41467-022-31023-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/27/2022] [Indexed: 01/02/2023] Open
Abstract
Acetohydroxyacid synthase (AHAS) is the target for more than 50 commercial herbicides; first applied to crops in the 1980s. Since then, 197 site-of-action resistance isolates have been identified in weeds, with mutations at P197 and W574 the most prevalent. Consequently, AHAS is at risk of not being a useful target for crop protection. To develop new herbicides, a functional understanding to explain the effect these mutations have on activity is required. Here, we show that these mutations can have two effects (i) to reduce binding affinity of the herbicides and (ii) to abolish time-dependent accumulative inhibition, critical to the exceptional effectiveness of this class of herbicide. In the two mutants, conformational changes occur resulting in a loss of accumulative inhibition by most herbicides. However, bispyribac, a bulky herbicide is able to counteract the detrimental effects of these mutations, explaining why no site-of-action resistance has yet been reported for this herbicide. Acetohydroxyacid synthase (AHAS) is the target of more than 50 commercial herbicides, with many site-of-action resistance isolates identified in weeds. Here, the authors report the structural and kinetic characterizations to explain the effect AHAS mutations have on herbicide potency.
Collapse
|
9
|
de Faria AC, Daré JK, da Cunha EFF, Freitas MP. Computer-Assisted Improvement of Sulfonylureas with Antifungal Properties and Limited Herbicidal Activity: Potential Application in Forage Conservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3321-3330. [PMID: 35230107 DOI: 10.1021/acs.jafc.1c07352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work reports studies at the molecular level of a series of modified sulfonylureas to determine the chemophoric sites responsible for their antifungal and herbicidal activities. For forage conservation, high antifungal potency and low phytotoxicity are required. A molecular modeling study based on multivariate image analysis applied to quantitative structure-activity relationship (MIA-QSAR) was performed to model these properties, as well as to guide the design of new agrochemical candidates. As a result, the MIA-QSAR models were reliable, robust, and predictive; for antifungal activity, the averages of the main validation parameters were r2 = 0.936, q2 = 0.741, and r2pred = 0.720, and for herbicidal activity, the model was very predictive (r2pred = 0.981 and r2m = 0.944). From the interpretation of the MIA-plots, 46 novel sulfonylureas with likely improved performance were proposed, from which 9 presented promising calculated selectivity indexes. Docking studies were performed to validate the QSAR predictions and to understand the interaction mode of the proposed ligands with the acetohydroxyacid synthase enzyme.
Collapse
Affiliation(s)
- Adriana C de Faria
- Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Minas Gerais 37200-900, Brazil
| | - Joyce K Daré
- Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Minas Gerais 37200-900, Brazil
| | - Elaine F F da Cunha
- Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Minas Gerais 37200-900, Brazil
| | - Matheus P Freitas
- Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Minas Gerais 37200-900, Brazil
| |
Collapse
|
10
|
Low YS, Garcia MD, Lonhienne T, Fraser JA, Schenk G, Guddat LW. Triazolopyrimidine herbicides are potent inhibitors of Aspergillus fumigatus acetohydroxyacid synthase and potential antifungal drug leads. Sci Rep 2021; 11:21055. [PMID: 34702838 PMCID: PMC8548585 DOI: 10.1038/s41598-021-00349-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/06/2021] [Indexed: 11/09/2022] Open
Abstract
Aspergillus fumigatus is a fungal pathogen whose effects can be debilitating and potentially fatal in immunocompromised patients. Current drug treatment options for this infectious disease are limited to just a few choices (e.g. voriconazole and amphotericin B) and these themselves have limitations due to potentially adverse side effects. Furthermore, the likelihood of the development of resistance to these current drugs is ever present. Thus, new treatment options are needed for this infection. A new potential antifungal drug target is acetohydroxyacid synthase (AHAS; EC 2.2.1.6), the first enzyme in the branched chain amino acid biosynthesis pathway, and a target for many commercial herbicides. In this study, we have expressed, purified and characterised the catalytic subunit of AHAS from A. fumigatus and determined the inhibition constants for several known herbicides. The most potent of these, penoxsulam and metosulam, have Ki values of 1.8 ± 0.9 nM and 1.4 ± 0.2 nM, respectively. Molecular modelling shows that these compounds are likely to bind into the herbicide binding pocket in a mode similar to Candida albicans AHAS. We have also shown that these two compounds inhibit A. fumigatus growth at a concentration of 25 µg/mL. Thus, AHAS inhibitors are promising leads for the development of new anti-aspergillosis therapeutics.
Collapse
Affiliation(s)
- Y S Low
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - M D Garcia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - T Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - J A Fraser
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - G Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - L W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
11
|
Wang HL, Li HR, Zhang YC, Yang WT, Yao Z, Wu RJ, Niu CW, Li YH, Wang JG. Discovery of ortho-Alkoxy Substituted Novel Sulfonylurea Compounds That Display Strong Herbicidal Activity against Monocotyledon Grasses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8415-8427. [PMID: 34283603 DOI: 10.1021/acs.jafc.1c02081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the present study, we have designed and synthesized a series of 42 novel sulfonylurea compounds with ortho-alkoxy substitutions at the phenyl ring and evaluated their herbicidal activities. Some target compounds showed excellent herbicidal activity against monocotyledon weed species. When applied at 7.5 g ha-1, 6-11 exhibited more potent herbicidal activity against barnyard grass (Echinochloa crus-galli) and crab grass (Digitaria sanguinalis) than commercial acetohydroxyacid synthase (AHAS; EC 2.2.1.6) inhibitors triasulfuron, penoxsulam, and nicosulfuron at both pre-emergence and postemergence conditions. 6-11 was safe for peanut for postemergence application at this ultralow dosage, suggesting that it could be considered a potential herbicide candidate for peanut fields. Although 6-11 and triasulfuron share similar chemical structures and have close Ki values for plant AHAS, a significant difference has been observed between their LUMO maps from DFT calculations, which might be a possible factor that leads to their different behaviors toward monocotyledon weed species.
Collapse
Affiliation(s)
- Hai-Lian Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao-Ran Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Chi Zhang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wen-Tao Yang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zheng Yao
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ren-Jun Wu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong-Hong Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Fang J, Wan C, Wang W, Ma L, Wang X, Cheng C, Zhou J, Qiao Y, Wang X. Engineering Herbicide-Tolerance Rice Expressing an Acetohydroxyacid Synthase with a Single Amino Acid Deletion. Int J Mol Sci 2020; 21:ijms21041265. [PMID: 32070060 PMCID: PMC7072996 DOI: 10.3390/ijms21041265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022] Open
Abstract
The acetohydroxyacid synthase (AHAS) is an essential enzyme involved in branched amino acids. Several herbicides wither weeds via inhibiting AHAS activity, and the AHAS mutants show tolerance to these herbicides. However, most AHAS mutations are residue substitutions but not residue deletion. Here, residue deletion was used to engineering the AHAS gene and herbicide-tolerant rice. Molecular docking analysis predicted that the W548 of the AHAS was a residue deletion to generate herbicide tolerance. The AHAS-ΔW548 protein was generated in vitro to remove the W548 residue. Interestingly, the deletion led to the tetramer dissociation of the AHAS, while this dissociation did not reduce the activity of the AHAS. Moreover, the W548 deletion contributed to multi-family herbicides tolerance. Specially, it conferred more tolerance to sulfometuron-methyl and bispyribac-sodium than the W548L substitution. Further analysis revealed that AHAS-ΔW548 had the best performance on the sulfometuron-methyl tolerance compared to the wild-type control. Over-expression of the AHAS-ΔW548 gene into rice led to the tolerance of multiple herbicides in the transgenic line. The T-DNA insertion and the herbicide treatment did not affect the agronomic traits and yields, while more branched-chain amino acids were detected in transgenic rice seeds. Residue deletion of W548 in the AHAS could be a useful strategy for engineering herbicide tolerant rice. The increase of branched-chain amino acids might improve the umami tastes of the rice.
Collapse
Affiliation(s)
- Jun Fang
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Rd, Shanghai 201403, China; (C.W.); (X.W.); (C.C.); (J.Z.); (Y.Q.)
- Correspondence:
| | - Changzhao Wan
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Rd, Shanghai 201403, China; (C.W.); (X.W.); (C.C.); (J.Z.); (Y.Q.)
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 99 Haike Rd, Shanghai 201210, China;
| | - Liuyin Ma
- Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xinqi Wang
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Rd, Shanghai 201403, China; (C.W.); (X.W.); (C.C.); (J.Z.); (Y.Q.)
| | - Can Cheng
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Rd, Shanghai 201403, China; (C.W.); (X.W.); (C.C.); (J.Z.); (Y.Q.)
| | - Jihua Zhou
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Rd, Shanghai 201403, China; (C.W.); (X.W.); (C.C.); (J.Z.); (Y.Q.)
| | - Yongjin Qiao
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Rd, Shanghai 201403, China; (C.W.); (X.W.); (C.C.); (J.Z.); (Y.Q.)
| | - Xiao Wang
- Crop Breeding and Cultivating Institute, Shanghai Academy of Agricultural Sciences, 1000 Jingqi Rd, Shanghai 201403, China; (C.W.); (X.W.); (C.C.); (J.Z.); (Y.Q.)
| |
Collapse
|
13
|
Brilisauer K, Rapp J, Rath P, Schöllhorn A, Bleul L, Weiß E, Stahl M, Grond S, Forchhammer K. Cyanobacterial antimetabolite 7-deoxy-sedoheptulose blocks the shikimate pathway to inhibit the growth of prototrophic organisms. Nat Commun 2019; 10:545. [PMID: 30710081 PMCID: PMC6358636 DOI: 10.1038/s41467-019-08476-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/09/2019] [Indexed: 11/17/2022] Open
Abstract
Antimetabolites are small molecules that inhibit enzymes by mimicking physiological substrates. We report the discovery and structural elucidation of the antimetabolite 7-deoxy-sedoheptulose (7dSh). This unusual sugar inhibits the growth of various prototrophic organisms, including species of cyanobacteria, Saccharomyces, and Arabidopsis. We isolate bioactive 7dSh from culture supernatants of the cyanobacterium Synechococcus elongatus. A chemoenzymatic synthesis of 7dSh using S. elongatus transketolase as catalyst and 5-deoxy-d-ribose as substrate allows antimicrobial and herbicidal bioprofiling. Organisms treated with 7dSh accumulate 3-deoxy-d-arabino-heptulosonate 7-phosphate, which indicates that the molecular target is 3-dehydroquinate synthase, a key enzyme of the shikimate pathway, which is absent in humans and animals. The herbicidal activity of 7dSh is in the low micromolar range. No cytotoxic effects on mammalian cells have been observed. We propose that the in vivo inhibition of the shikimate pathway makes 7dSh a natural antimicrobial and herbicidal agent. Mother Nature is a valuable resource for the discovery of drug and agricultural chemicals. Here, the authors show that 7-deoxy-sedoheptulose produced by a cyanobacterium is an antimicrobial and herbicidal compound that acts through inhibition of 3-dehydroquniate synthase in the shikimate pathway.
Collapse
Affiliation(s)
- Klaus Brilisauer
- Institute of Organic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany.,Microbiology, Organismic Interactions, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Johanna Rapp
- Microbiology, Organismic Interactions, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Pascal Rath
- Institute of Organic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Anna Schöllhorn
- Microbiology, Organismic Interactions, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Eberhard Karls Universität Tübingen, Eugenstraße 6, 72076, Tübingen, Germany
| | - Elisabeth Weiß
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Eberhard Karls Universität Tübingen, Eugenstraße 6, 72076, Tübingen, Germany
| | - Mark Stahl
- Center for Plant Molecular Biology, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Stephanie Grond
- Institute of Organic Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| | - Karl Forchhammer
- Microbiology, Organismic Interactions, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| |
Collapse
|
14
|
Commercial AHAS-inhibiting herbicides are promising drug leads for the treatment of human fungal pathogenic infections. Proc Natl Acad Sci U S A 2018; 115:E9649-E9658. [PMID: 30249642 DOI: 10.1073/pnas.1809422115] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The increased prevalence of drug-resistant human pathogenic fungal diseases poses a major threat to global human health. Thus, new drugs are urgently required to combat these infections. Here, we demonstrate that acetohydroxyacid synthase (AHAS), the first enzyme in the branched-chain amino acid biosynthesis pathway, is a promising new target for antifungal drug discovery. First, we show that several AHAS inhibitors developed as commercial herbicides are powerful accumulative inhibitors of Candida albicans AHAS (K i values as low as 800 pM) and have determined high-resolution crystal structures of this enzyme in complex with several of these herbicides. In addition, we have demonstrated that chlorimuron ethyl (CE), a member of the sulfonylurea herbicide family, has potent antifungal activity against five different Candida species and Cryptococcus neoformans (with minimum inhibitory concentration, 50% values as low as 7 nM). Furthermore, in these assays, we have shown CE and itraconazole (a P450 inhibitor) can act synergistically to further improve potency. Finally, we show in Candida albicans-infected mice that CE is highly effective in clearing pathogenic fungal burden in the lungs, liver, and spleen, thus reducing overall mortality rates. Therefore, in view of their low toxicity to human cells, AHAS inhibitors represent a new class of antifungal drug candidates.
Collapse
|
15
|
Li KJ, Qu RY, Liu YC, Yang JF, Devendar P, Chen Q, Niu CW, Xi Z, Yang GF. Design, Synthesis, and Herbicidal Activity of Pyrimidine-Biphenyl Hybrids as Novel Acetohydroxyacid Synthase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3773-3782. [PMID: 29618205 DOI: 10.1021/acs.jafc.8b00665] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The issue of weed resistance to acetohydroxyacid synthase (EC 2.2.1.6, AHAS) inhibitors has become one of the largest obstacles for the application of this class of herbicides. In a continuing effort to discover novel AHAS inhibitors to overcome weed resistance, a series of pyrimidine-biphenyl hybrids (4aa-bb and 5aa-ah) were designed and synthesized via a scaffold hopping strategy. Among these derivatives, compounds 4aa ( Ki = 0.09 μM) and 4bb ( Ki = 0.02 μM) displayed higher inhibitory activities against Arabidopsis thaliana AHAS than those of the controls bispyribac ( Ki = 0.54 μM) and flumetsulam ( Ki = 0.38 μM). Remarkably, compounds 4aa, 4bb, 5ah, and 5ag exhibited excellent postemergence herbicidal activity and a broad spectrum of weed control at application rates of 37.5-150 g of active ingredient (ai)/ha. Furthermore, 4aa and 4bb showed higher herbicidal activity against AHAS inhibitor-resistant Descurainia sophia, Ammannia arenaria, and the corresponding sensitive weeds than that of bispyribac at 0.94-0.235 g ai/ha. Therefore, the pyrimidine-biphenyl motif and lead compounds 4aa and 4bb have great potential for the discovery of novel AHAS inhibitors to combat AHAS-inhibiting herbicide-resistant weeds.
Collapse
Affiliation(s)
- Ke-Jian Li
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Yu-Chao Liu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Ponnam Devendar
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Qiong Chen
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
| | - Cong-Wei Niu
- State Key Laboratory of Elemento-Organic Chemistry , Nankai University (NKU) , Tianjin 300071 , P.R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry , Nankai University (NKU) , Tianjin 300071 , P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 30071 , P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry , Central China Normal University (CCNU) , Wuhan 430079 , P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 30071 , P.R. China
| |
Collapse
|
16
|
Structural insights into the mechanism of inhibition of AHAS by herbicides. Proc Natl Acad Sci U S A 2018; 115:E1945-E1954. [PMID: 29440497 DOI: 10.1073/pnas.1714392115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Acetohydroxyacid synthase (AHAS), the first enzyme in the branched amino acid biosynthesis pathway, is present only in plants and microorganisms, and it is the target of >50 commercial herbicides. Penoxsulam (PS), which is a highly effective broad-spectrum AHAS-inhibiting herbicide, is used extensively to control weed growth in rice crops. However, the molecular basis for its inhibition of AHAS is poorly understood. This is despite the availability of structural data for all other classes of AHAS-inhibiting herbicides. Here, crystallographic data for Saccharomyces cerevisiae AHAS (2.3 Å) and Arabidopsis thaliana AHAS (2.5 Å) in complex with PS reveal the extraordinary molecular mechanisms that underpin its inhibitory activity. The structures show that inhibition of AHAS by PS triggers expulsion of two molecules of oxygen bound in the active site, releasing them as substrates for an oxygenase side reaction of the enzyme. The structures also show that PS either stabilizes the thiamin diphosphate (ThDP)-peracetate adduct, a product of this oxygenase reaction, or traps within the active site an intact molecule of peracetate in the presence of a degraded form of ThDP: thiamine aminoethenethiol diphosphate. Kinetic analysis shows that PS inhibits AHAS by a combination of events involving FAD oxidation and chemical alteration of ThDP. With the emergence of increasing levels of resistance toward front-line herbicides and the need to optimize the use of arable land, these data suggest strategies for next generation herbicide design.
Collapse
|
17
|
Satchivi NM, deBoer GJ, Bell JL. Understanding the Differential Response of Setaria viridis L. (green foxtail) and Setaria pumila Poir. (yellow foxtail) to Pyroxsulam. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7328-7336. [PMID: 28771349 DOI: 10.1021/acs.jafc.7b01453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Green foxtail [Setaria viridis (L) Beauv.] and yellow foxtail [Setaria pumila (Poir.) Roem. & Schult.] are among the most abundant and troublesome annual grass weeds in cereal crops in the Northern Plains of the United States and the Prairie Provinces of Canada. Greenhouse and laboratory experiments were conducted to examine the differential responses of both weed species to foliar applications of the new triazolopyrimidine sulfonamide acetolactate synthase-inhibiting herbicide, pyroxsulam, and to determine the mechanism(s) of differential weed control. Foliar applications of pyroxsulam resulted in >90% control of yellow foxtail at rates between 7.5 and 15 g ai ha-1, whereas the same rates resulted in a reduced efficacy on green foxtail (≤81%). The absorption and translocation of [14C]pyroxsulam in green and yellow foxtail were similar and could not explain the differential whole-plant efficacy. Studies with [14C]pyroxsulam revealed a higher percentage of absorbed pyroxsulam was metabolized into an inactive metabolite in the treated leaf of green foxtail than in the treated leaf of yellow foxtail. Metabolism studies demonstrated that, 48 h after application, 50 and 35% of pyroxsulam in the treated leaf was converted to 5-hydroxy-pyroxsulam in green and yellow foxtail, respectively. The acetolactate synthase (ALS) inhibition assay showed that ALS extracted from green foxtail was more tolerant to pyroxsulam than the enzyme extracted from yellow foxtail was. The in vitro ALS assay showed IC50 values of 8.39 and 0.26 μM pyroxsulam for green and yellow foxtail, respectively. The ALS genes from both green and yellow foxtail were sequenced and revealed amino acid differences; however, the changes are not associated with known resistance-inducing mutations. The differential control of green and yellow foxtail following foliar applications of pyroxsulam was attributed to differences in both metabolism and ALS sensitivity.
Collapse
Affiliation(s)
- Norbert M Satchivi
- Dow AgroSciences LLC , 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Gerrit J deBoer
- Dow AgroSciences LLC , 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Jared L Bell
- Dow AgroSciences LLC , 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| |
Collapse
|