1
|
Uenaka M, Ohnishi Y, Ise A, Yu J, Yano N, Kusaka K, Tanaka H, Kurisu G. Redox-dependent hydrogen-bond network rearrangement of ferredoxin-NADP + reductase revealed by high-resolution X-ray and neutron crystallography. Acta Crystallogr F Struct Biol Commun 2025; 81:73-84. [PMID: 39913263 PMCID: PMC11866413 DOI: 10.1107/s2053230x25000524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
High-resolution X-ray and neutron crystallography were employed to elucidate redox-dependent structural changes in ferredoxin-NADP+ reductase (FNR) from maize. This study focused on the rearrangement of hydrogen-bond networks upon FAD reduction. The X-ray structures of wild-type FNR in oxidized and reduced states were refined to 1.15 and 1.10 Å resolution, respectively, revealing no large structural changes in the main-chain backbones. Neutron crystallography provided complementary insights, confirming protonation at N1 and N5 of the isoalloxazine ring and visualizing hydrogen bonds that were undetectable by X-ray analysis. These findings illuminate the dynamic reorganization of water-mediated hydrogen-bond networks during redox transitions, which may underpin the redox-dependent modulation of partner binding by FNR. This integrated structural approach highlights the synergistic use of X-ray and neutron crystallography in studying redox-active proteins.
Collapse
Affiliation(s)
- Midori Uenaka
- Protein Crystallography Laboratory, Institute for Protein ResearchOsaka UniversitySuitaOsaka565-0871Japan
- Department of Biological Sciences, Graduate School of ScienceOsaka UniversityToyonakaOsaka560-0043Japan
| | - Yusuke Ohnishi
- Protein Crystallography Laboratory, Institute for Protein ResearchOsaka UniversitySuitaOsaka565-0871Japan
| | - Akane Ise
- Protein Crystallography Laboratory, Institute for Protein ResearchOsaka UniversitySuitaOsaka565-0871Japan
- Department of Macromolecular Science, Graduate School of ScienceOsaka UniversityToyonakaOsaka560-0043Japan
| | - Jiang Yu
- Protein Crystallography Laboratory, Institute for Protein ResearchOsaka UniversitySuitaOsaka565-0871Japan
| | - Naomine Yano
- Structural Biology DivisionJapan Synchrotron Radiation Research InstituteHyogo679-5198Japan
| | - Katsuhiro Kusaka
- Neutron Industrial Application Promotion CenterComprehensive Research Organization for Science and SocietyTokaiIbaraki319-1106Japan
| | - Hideaki Tanaka
- Protein Crystallography Laboratory, Institute for Protein ResearchOsaka UniversitySuitaOsaka565-0871Japan
- Department of Biological Sciences, Graduate School of ScienceOsaka UniversityToyonakaOsaka560-0043Japan
- Department of Macromolecular Science, Graduate School of ScienceOsaka UniversityToyonakaOsaka560-0043Japan
| | - Genji Kurisu
- Protein Crystallography Laboratory, Institute for Protein ResearchOsaka UniversitySuitaOsaka565-0871Japan
- Department of Biological Sciences, Graduate School of ScienceOsaka UniversityToyonakaOsaka560-0043Japan
- Department of Macromolecular Science, Graduate School of ScienceOsaka UniversityToyonakaOsaka560-0043Japan
| |
Collapse
|
2
|
Lee E, Redzic JS, Eisenmesser EZ. Evolutionary Adaptations in Biliverdin Reductase B: Insights into Coenzyme Dynamics and Catalytic Efficiency. Int J Mol Sci 2024; 25:13233. [PMID: 39768998 PMCID: PMC11675717 DOI: 10.3390/ijms252413233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Biliverdin reductase B (BLVRB) is a redox regulator that catalyzes nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reductions of multiple substrates, including flavins and biliverdin-β. BLVRB has emerging roles in redox regulation and post-translational modifications, highlighting its importance in various physiological contexts. In this study, we explore the structural and functional differences between human BLVRB and its hyrax homologue, focusing on evolutionary adaptations at the active site and allosteric regions. Using NMR spectroscopy, we compared coenzyme binding, catalytic turnover, and dynamic behavior between the two homologues. Despite lacking the arginine "clamp" present in human BLVRB, hyrax BLVRB still undergoes conformational changes in response to the oxidative state of the coenzyme. Mutations at the allosteric site (position 164) show that threonine at this position enhances coenzyme discrimination and allosteric coupling in human BLVRB, while hyrax BLVRB does not display the same allosteric effects. Relaxation experiments revealed distinct dynamic behaviors in hyrax BLVRB, with increased flexibility in its holo form due to the absence of the clamp. Our findings suggest that the evolutionary loss of the active site clamp and modifications at position 164 in hyrax BLVRB alter the enzyme's conformational dynamics and coenzyme interactions. Identified similarities and differences underscore how key regions modulate catalytic efficiency and suggest that coenzyme isomerization may represent the rate-limiting step in both homologues.
Collapse
Affiliation(s)
| | | | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (E.L.); (J.S.R.)
| |
Collapse
|
3
|
Dubach VRA, San Segundo-Acosta P, Murphy BJ. Structural and mechanistic insights into Streptococcus pneumoniae NADPH oxidase. Nat Struct Mol Biol 2024; 31:1769-1777. [PMID: 39039317 PMCID: PMC11564096 DOI: 10.1038/s41594-024-01348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) have a major role in the physiology of eukaryotic cells by mediating reactive oxygen species production. Evolutionarily distant proteins with the NOX catalytic core have been found in bacteria, including Streptococcus pneumoniae NOX (SpNOX), which is proposed as a model for studying NOXs because of its high activity and stability in detergent micelles. We present here cryo-electron microscopy structures of substrate-free and nicotinamide adenine dinucleotide (NADH)-bound SpNOX and of NADPH-bound wild-type and F397A SpNOX under turnover conditions. These high-resolution structures provide insights into the electron-transfer pathway and reveal a hydride-transfer mechanism regulated by the displacement of F397. We conducted structure-guided mutagenesis and biochemical analyses that explain the absence of substrate specificity toward NADPH and suggest the mechanism behind constitutive activity. Our study presents the structural basis underlying SpNOX enzymatic activity and sheds light on its potential in vivo function.
Collapse
Affiliation(s)
- Victor R A Dubach
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Redox and Metalloprotein Research Group, IMPRS on Cellular Biophysics, Frankfurt am Main, Germany
| | - Pablo San Segundo-Acosta
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- Chronic Disease Programme, UFIEC, Carlos III Health Institute, Madrid, Spain.
| | - Bonnie J Murphy
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
4
|
Siritanaratkul B, Megarity CF, Herold RA, Armstrong FA. Interactive biocatalysis achieved by driving enzyme cascades inside a porous conducting material. Commun Chem 2024; 7:132. [PMID: 38858478 PMCID: PMC11165005 DOI: 10.1038/s42004-024-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
An emerging concept and platform, the electrochemical Leaf (e-Leaf), offers a radical change in the way tandem (multi-step) catalysis by enzyme cascades is studied and exploited. The various enzymes are loaded into an electronically conducting porous material composed of metallic oxide nanoparticles, where they achieve high concentration and crowding - in the latter respect the environment resembles that found in living cells. By exploiting efficient electron tunneling between the nanoparticles and one of the enzymes, the e-Leaf enables the user to interact directly with complex networks, rendering simultaneous the abilities to energise, control and observe catalysis. Because dispersion of intermediates is physically suppressed, the output of the cascade - the rate of flow of chemical steps and information - is delivered in real time as electrical current. Myriad enzymes of all major classes now become effectively electroactive in a technology that offers scalability between micro-(analytical, multiplex) and macro-(synthesis) levels. This Perspective describes how the e-Leaf was discovered, the steps in its development so far, and the outlook for future research and applications.
Collapse
Affiliation(s)
| | - Clare F Megarity
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Ryan A Herold
- Department of Chemistry, University of Oxford, Oxford, OX1 3QR, UK
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | | |
Collapse
|
5
|
Petit-Hartlein I, Vermot A, Thepaut M, Humm AS, Dupeux F, Dupuy J, Chaptal V, Marquez JA, Smith SME, Fieschi F. X-ray structure and enzymatic study of a bacterial NADPH oxidase highlight the activation mechanism of eukaryotic NOX. eLife 2024; 13:RP93759. [PMID: 38640072 PMCID: PMC11031084 DOI: 10.7554/elife.93759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2's requirement for activation.
Collapse
Affiliation(s)
| | - Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie StructuraleGrenobleFrance
| | - Michel Thepaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie StructuraleGrenobleFrance
| | | | - Florine Dupeux
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie StructuraleGrenobleFrance
- European Molecular Biology LaboratoryGrenobleFrance
| | - Jerome Dupuy
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie StructuraleGrenobleFrance
| | | | | | - Susan ME Smith
- Department of Molecular and Cellular Biology, Kennesaw State UniversityKennesawUnited States
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie StructuraleGrenobleFrance
- Institut Universitaire de FranceParisFrance
| |
Collapse
|
6
|
Liu X, Shi Y, Liu R, Song K, Chen L. Structure of human phagocyte NADPH oxidase in the activated state. Nature 2024; 627:189-195. [PMID: 38355798 DOI: 10.1038/s41586-024-07056-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Phagocyte NADPH oxidase, a protein complex with a core made up of NOX2 and p22 subunits, is responsible for transferring electrons from intracellular NADPH to extracellular oxygen1. This process generates superoxide anions that are vital for killing pathogens1. The activation of phagocyte NADPH oxidase requires membrane translocation and the binding of several cytosolic factors2. However, the exact mechanism by which cytosolic factors bind to and activate NOX2 is not well understood. Here we present the structure of the human NOX2-p22 complex activated by fragments of three cytosolic factors: p47, p67 and Rac1. The structure reveals that the p67-Rac1 complex clamps onto the dehydrogenase domain of NOX2 and induces its contraction, which stabilizes the binding of NADPH and results in a reduction of the distance between the NADPH-binding domain and the flavin adenine dinucleotide (FAD)-binding domain. Furthermore, the dehydrogenase domain docks onto the bottom of the transmembrane domain of NOX2, which reduces the distance between FAD and the inner haem. These structural rearrangements might facilitate the efficient transfer of electrons between the redox centres in NOX2 and lead to the activation of phagocyte NADPH oxidase.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yiting Shi
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
| | - Rui Liu
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
| | - Kangcheng Song
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China
| | - Lei Chen
- State Key Laboratory of Membrane Biology, College of Future Technology, Institute of Molecular Medicine, Peking University, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Beijing, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- National Biomedical Imaging Center, Peking University, Beijing, China.
| |
Collapse
|
7
|
Reis J, Gorgulla C, Massari M, Marchese S, Valente S, Noce B, Basile L, Törner R, Cox H, Viennet T, Yang MH, Ronan MM, Rees MG, Roth JA, Capasso L, Nebbioso A, Altucci L, Mai A, Arthanari H, Mattevi A. Targeting ROS production through inhibition of NADPH oxidases. Nat Chem Biol 2023; 19:1540-1550. [PMID: 37884805 DOI: 10.1038/s41589-023-01457-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
NADPH oxidases (NOXs) are transmembrane enzymes that are devoted to the production of reactive oxygen species (ROS). In cancers, dysregulation of NOX enzymes affects ROS production, leading to redox unbalance and tumor progression. Consequently, NOXs are a drug target for cancer therapeutics, although current therapies have off-target effects: there is a need for isoenzyme-selective inhibitors. Here, we describe fully validated human NOX inhibitors, obtained from an in silico screen, targeting the active site of Cylindrospermum stagnale NOX5 (csNOX5). The hits are validated by in vitro and in cellulo enzymatic and binding assays, and their binding modes to the dehydrogenase domain of csNOX5 studied via high-resolution crystal structures. A high-throughput screen in a panel of cancer cells shows activity in selected cancer cell lines and synergistic effects with KRAS modulators. Our work lays the foundation for the development of inhibitor-based methods for controlling the tightly regulated and highly localized ROS sources.
Collapse
Affiliation(s)
- Joana Reis
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA
| | - Marta Massari
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Sara Marchese
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Basile
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy
| | - Ricarda Törner
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Huel Cox
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thibault Viennet
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Moon Hee Yang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | - Lucia Capasso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy.
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Andrea Mattevi
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, Pavia, Italy.
| |
Collapse
|
8
|
Lee E, McLeod MJ, Redzic JS, Marcolin B, Thorne RE, Agarwal P, Eisenmesser EZ. Identifying structural and dynamic changes during the Biliverdin Reductase B catalytic cycle. Front Mol Biosci 2023; 10:1244587. [PMID: 37645217 PMCID: PMC10461185 DOI: 10.3389/fmolb.2023.1244587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Biliverdin Reductase B (BLVRB) is an NADPH-dependent reductase that catalyzes the reduction of multiple substrates and is therefore considered a critical cellular redox regulator. In this study, we sought to address whether both structural and dynamics changes occur between different intermediates of the catalytic cycle and whether these were relegated to just the active site or the entirety of the enzyme. Through X-ray crystallography, we determined the apo BLVRB structure for the first time, revealing subtle global changes compared to the holo structure and identifying the loss of a critical hydrogen bond that "clamps" the R78-loop over the coenzyme. Amide and Cα chemical shift perturbations were used to identify environmental and secondary structural changes between intermediates, with more distant global changes observed upon coenzyme binding compared to substrate interactions. NMR relaxation rate measurements provided insights into the dynamic behavior of BLVRB during the catalytic cycle. Specifically, the inherently dynamic R78-loop that becomes ordered upon coenzyme binding persists through the catalytic cycle while similar regions experience dynamic exchange. However, the dynamic exchange processes were found to differ through the catalytic cycle with several groups of residues exhibiting similar dynamic responses. Finally, both local and distal structural and dynamic changes occur within BLVRB that are dependent solely on the oxidative state of the coenzyme. Thus, through a comprehensive analysis here, this study revealed structural and dynamic alterations in BLVRB through its catalytic cycle that are not simply relegated to the active site, but instead, are allosterically coupled throughout the enzyme.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Matthew J. McLeod
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, United States
| | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Barbara Marcolin
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Robert E. Thorne
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, United States
| | - Pratul Agarwal
- Department of Physiological Sciences and High Performance Computing Center, Oklahoma State University, Stillwater, OK, United States
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
9
|
Beaumel S, Verbrugge L, Fieschi F, Stasia MJ. CRISPR-gene-engineered CYBB knock-out PLB-985 cells, a useful model to study functional impact of X-linked chronic granulomatous disease mutations: application to the G412E X91+-CGD mutation. Clin Exp Immunol 2023; 212:156-165. [PMID: 36827093 PMCID: PMC10128165 DOI: 10.1093/cei/uxad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/24/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023] Open
Abstract
Chronic granulomatous disease (CGD) is a rare primary immune disorder caused by mutations in one of the five subunits of the NADPH oxidase complex expressed in phagocytes. Two-thirds of CGD cases are caused by mutations in CYBB that encodes NOX2 or gp91phox. Some rare X91+-CGD point mutations lead to a loss of function but with a normal expression of the mutated NOX2 protein. It is therefore necessary to ensure that this mutation is indeed responsible for the loss of activity in order to make a safe diagnosis for genetic counselling. We previously used the X-CGD PLB-985 cell model of M.C. Dinauer obtained by homologous recombination in the original PLB-985 human myeloid cell line, in order to study the functional impact of such mutations. Although the PLB-985 cell line was originally described by K.A. Tucker et al. in1987 as a distinct cell line isolated from a patient with acute nonlymphocytic leukemia, it is actually identified as a subclone of the HL-60 cells. In order to use a cellular model that meets the quality standard for the functional study of X91+-CGD mutations in CGD diagnosis, we developed our own model using the CRISPR-Cas9 technology in a certified PLB-985 cell line from DSMZ-German Collection of Microorganisms and Cell Cultures. Thanks to this new X-CGD model, we demonstrated that the G412E mutation in NOX2 found in a X91+-CGD patient prohibits access of the electron donor NADPH to its binding site explaining the absence of superoxide production in his neutrophils.
Collapse
Affiliation(s)
- Sylvain Beaumel
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle Biologie, CDiReC, Grenoble, France
| | - Lucile Verbrugge
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle Biologie, CDiReC, Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
- Institut Universitaire de France (IUF), Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation, Paris, France
| | - Marie José Stasia
- Centre Hospitalier Universitaire Grenoble Alpes, Pôle Biologie, CDiReC, Grenoble, France
- Univ. Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| |
Collapse
|
10
|
Iyanagi T. Roles of Ferredoxin-NADP + Oxidoreductase and Flavodoxin in NAD(P)H-Dependent Electron Transfer Systems. Antioxidants (Basel) 2022; 11:2143. [PMID: 36358515 PMCID: PMC9687028 DOI: 10.3390/antiox11112143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 07/21/2023] Open
Abstract
Distinct isoforms of FAD-containing ferredoxin-NADP+ oxidoreductase (FNR) and ferredoxin (Fd) are involved in photosynthetic and non-photosynthetic electron transfer systems. The FNR (FAD)-Fd [2Fe-2S] redox pair complex switches between one- and two-electron transfer reactions in steps involving FAD semiquinone intermediates. In cyanobacteria and some algae, one-electron carrier Fd serves as a substitute for low-potential FMN-containing flavodoxin (Fld) during growth under low-iron conditions. This complex evolves into the covalent FNR (FAD)-Fld (FMN) pair, which participates in a wide variety of NAD(P)H-dependent metabolic pathways as an electron donor, including bacterial sulfite reductase, cytochrome P450 BM3, plant or mammalian cytochrome P450 reductase and nitric oxide synthase isoforms. These electron transfer systems share the conserved Ser-Glu/Asp pair in the active site of the FAD module. In addition to physiological electron acceptors, the NAD(P)H-dependent diflavin reductase family catalyzes a one-electron reduction of artificial electron acceptors such as quinone-containing anticancer drugs. Conversely, NAD(P)H: quinone oxidoreductase (NQO1), which shares a Fld-like active site, functions as a typical two-electron transfer antioxidant enzyme, and the NQO1 and UDP-glucuronosyltransfease/sulfotransferase pairs function as an antioxidant detoxification system. In this review, the roles of the plant FNR-Fd and FNR-Fld complex pairs were compared to those of the diflavin reductase (FAD-FMN) family. In the final section, evolutionary aspects of NAD(P)H-dependent multi-domain electron transfer systems are discussed.
Collapse
Affiliation(s)
- Takashi Iyanagi
- Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Akoh 678-1297, Hyogo, Japan
| |
Collapse
|
11
|
Scoditti S, Dabbish E, Pieslinger GE, Rezabal E, Lopez X, Sicilia E, Salassa L. Flavin-mediated photoactivation of Pt(IV) anticancer complexes: computational insights on the catalytic mechanism. Phys Chem Chem Phys 2022; 24:5323-5329. [PMID: 35188500 DOI: 10.1039/d1cp05507k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism for the photocatalytic activation of Pt(IV) anticancer prodrugs by riboflavin in the presence of NADH has been investigated by DFT. In the first step of the reaction, the oxidation kinetics of NADH to afford the catalytically active riboflavin hydroquinone is dramatically favoured by generation of the flavin triplet excited state. In the triplet, formation of a π-π stacked adduct promotes the hydride transfer from NADH to riboflavin with an almost barrierless pathway (2.7 kcal mol-1). In the singlet channel, conversely, the process is endergonic and requires overcoming a higher activation energy (19.2 kcal mol-1). In the second half of the reaction, the reduction of the studied Pt(IV) complexes by riboflavin hydroquinone occurs via an inner sphere mechanism, displaying free energy barriers smaller than 10 kcal mol-1. Pt reduction by bioreductants such as NADH and ascorbate involve instead less stabilized transition states (22.2-38.3 kcal mol-1), suggesting that riboflavin hydroquinone is an efficient reducing agent for Pt(IV) derivatives in biological settings.
Collapse
Affiliation(s)
- Stefano Scoditti
- Department of Chemistry and Chemical Technologies, Università della Calabria, Arcavacata di Rende (CS), 87036, Italy.
| | - Eslam Dabbish
- Department of Chemistry and Chemical Technologies, Università della Calabria, Arcavacata di Rende (CS), 87036, Italy.
| | - German E Pieslinger
- CONICET - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Elixabete Rezabal
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain. .,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia, 20018, Spain
| | - Xabier Lopez
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain. .,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia, 20018, Spain
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, Arcavacata di Rende (CS), 87036, Italy.
| | - Luca Salassa
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain. .,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia, 20018, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48011, Spain
| |
Collapse
|
12
|
Fan Z, Huang J, Huang H, Banerjee S. Metal-Based Catalytic Drug Development for Next-Generation Cancer Therapy. ChemMedChem 2021; 16:2480-2486. [PMID: 34028190 DOI: 10.1002/cmdc.202100297] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/14/2022]
Abstract
Considering the high increase in mortality caused by cancer in recent years, cancer drugs with novel mechanisms of anticancer action are urgently needed to overcome the drawbacks of platinum-based chemotherapeutics. Recently, in the area of metal-based cancer drug development research, the concept of catalytic cancer drugs has been introduced with organometallic RuII , OsII , RhIII and IrIII complexes. These complexes are reported as catalysts for many important biological transformations in cancer cells such as nicotinamide adenine dinucleotide (NAD(P)H) oxidation to NAD+ , reduction of NAD+ to NADH, and reduction of pyruvate to lactate. These unnatural intracellular transformations with catalytic and nontoxic doses of metal complexes are known to severely perturb several important biochemical pathways and could be the antecedent of next-generation catalytic cancer drug development. In this concept, we delineate the prospects of such recently reported organometallic RuII , OsII , RhIII and IrIII complexes as future catalytic cancer drugs. This new approach has the potential to deliver new cancer drug candidates.
Collapse
Affiliation(s)
- Zhongxian Fan
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Juyang Huang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Huaiyi Huang
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP-221005, India
| |
Collapse
|
13
|
Varner TA, Mohamed-Raseek N, Miller AF. Assignments of 19F NMR resonances and exploration of dynamics in a long-chain flavodoxin. Arch Biochem Biophys 2021; 703:108839. [PMID: 33727041 DOI: 10.1016/j.abb.2021.108839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
Flavodoxin is a small protein that employs a non-covalently bound flavin to mediate single-electron transfer at low potentials. The long-chain flavodoxins possess a long surface loop that is proposed to interact with partner proteins. We have incorporated 19F-labeled tyrosine in long-chain flavodoxin from Rhodopseudomonas palustris to gain a probe of possible loop dynamics, exploiting the presence of a Tyr in the long loop in addition to Tyr residues near the flavin. We report 19F resonance assignments for all four Tyrs, and demonstration of a pair of resonances in slow exchange, both corresponding to a Tyr adjacent to the flavin. We also provide evidence for dynamics affecting the Tyr in the long loop. Thus, we show that 19F NMR of 19F-Tyr labeled flavodoxin holds promise for monitoring possible changes in conformation upon binding to partner proteins.
Collapse
Affiliation(s)
- Taylor A Varner
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | | | | |
Collapse
|
14
|
Banerjee S, Sadler PJ. Transfer hydrogenation catalysis in cells. RSC Chem Biol 2021; 2:12-29. [PMID: 34458774 PMCID: PMC8341873 DOI: 10.1039/d0cb00150c] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
Hydrogenation reactions in biology are usually carried out by enzymes with nicotinamide adenine dinucleotide (NAD(P)H) or flavin mononucleotide (FAMH2)/flavinadenine dinucleotide (FADH2) as cofactors and hydride sources. Industrial scale chemical transfer hydrogenation uses small molecules such as formic acid or alcohols (e.g. propanol) as hydride sources and transition metal complexes as catalysts. We focus here on organometallic half-sandwich RuII and OsII η6-arene complexes and RhIII and IrIII η5-Cp x complexes which catalyse hydrogenation of biomolecules such as pyruvate and quinones in aqueous media, and generate biologically important species such as H2 and H2O2. Organometallic catalysts can achieve enantioselectivity, and moreover can be active in living cells, which is surprising on account of the variety of poisons present. Such catalysts can induce reductive stress using formate as hydride source or oxidative stress by accepting hydride from NAD(P)H. In some cases, photocatalytic redox reactions can be induced by light absorption at metal or flavin centres. These artificial transformations can interfere in biochemical pathways in unusual ways, and are the basis for the design of metallodrugs with novel mechanisms of action.
Collapse
Affiliation(s)
- Samya Banerjee
- Department of Chemistry, University of Warwick, Gibbet Hill Road Coventry CV4 7AL UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
15
|
The Hydride Transfer Process in NADP-dependent Methylene-tetrahydromethanopterin Dehydrogenase. J Mol Biol 2020; 432:2042-2054. [PMID: 32061937 DOI: 10.1016/j.jmb.2020.01.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/22/2022]
Abstract
NADP-dependent methylene-tetrahydromethanopterin (methylene-H4MPT) dehydrogenase (MtdA) catalyzes the reversible dehydrogenation of methylene-H4MPT to form methenyl-H4MPT+ by using NADP+ as a hydride acceptor. This hydride transfer reaction is involved in the oxidative metabolism from formaldehyde to CO2 in methylotrophic and methanotrophic bacteria. Here, we report on the crystal structures of the ternary MtdA-substrate complexes from Methylorubrum extorquens AM1 obtained in open and closed forms. Their conversion is accomplished by opening/closing the active site cleft via a 15° rotation of the NADP, relative to the pterin domain. The 1.08 Å structure of the closed and active enzyme-NADP-methylene-H4MPT complex allows a detailed geometric analysis of the bulky substrates and a precise prediction of the hydride trajectory. Upon domain closure, the bulky substrate rings become compressed resulting in a tilt of the imidazolidine group of methylene-H4MPT that optimizes the geometry for hydride transfer. An additional 1.5 Å structure of MtdA in complex with the nonreactive NADP+ and methenyl-H4MPT+ revealed an extremely short distance between nicotinamide-C4 and imidazoline-C14a of 2.5 Å, which demonstrates the strong pressure imposed. The pterin-imidazolidine-phenyl butterfly angle of methylene-H4MPT bound to MtdA is smaller than that in the enzyme-free state but is similar to that in H2- and F420-dependent methylene-H4MPT dehydrogenases. The concept of compression-driven hydride transfer including quantum mechanical hydrogen tunneling effects, which are established for flavin- and NADP-dependent enzymes, can be expanded to hydride-transferring H4MPT-dependent enzymes.
Collapse
|
16
|
Pérez-Amigot D, Taleb V, Boneta S, Anoz-Carbonell E, Sebastián M, Velázquez-Campoy A, Polo V, Martínez-Júlvez M, Medina M. Towards the competent conformation for catalysis in the ferredoxin-NADP + reductase from the Brucella ovis pathogen. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:148058. [PMID: 31394095 DOI: 10.1016/j.bbabio.2019.148058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/19/2019] [Accepted: 08/02/2019] [Indexed: 02/02/2023]
Abstract
Brucella ovis encodes a bacterial subclass 1 ferredoxin-NADP(H) reductase (BoFPR) that, by similarity with other FPRs, is expected either to deliver electrons from NADPH to the redox-based metabolism and/or to oxidize NADPH to regulate the soxRS regulon that protects bacteria against oxidative damage. Such potential roles for the pathogen survival under infection conditions make of interest to understand and to act on the BoFPR mechanism. Here, we investigate the NADP+/H interaction and NADPH oxidation by hydride transfer (HT) to BoFPR. Crystal structures of BoFPR in free and in complex with NADP+ hardly differ. The latter shows binding of the NADP+ adenosine moiety, while its redox-reactive nicotinamide protrudes towards the solvent. Nonetheless, pre-steady-state kinetics show formation of a charge-transfer complex (CTC-1) prior to the hydride transfer, as well as conversion of CTC-1 into a second charge-transfer complex (CTC-2) concomitantly with the HT event. Thus, during catalysis nicotinamide and flavin reacting rings stack. Kinetic data also identify the HT itself as the rate limiting step in the reduction of BoFPR by NADPH, as well as product release limiting the overall reaction. Using all-atom molecular dynamics simulations with a thermal effect approach we are able to visualise a potential transient catalytically competent interaction of the reacting rings. Simulations indicate that the architecture of the FAD folded conformation in BoFPR might be key in catalysis, pointing to its adenine as an element to orient the reactive atoms in conformations competent for HT.
Collapse
Affiliation(s)
- Daniel Pérez-Amigot
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Víctor Taleb
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Sergio Boneta
- Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain; Departamento de Química Física, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ernesto Anoz-Carbonell
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - María Sebastián
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain; Aragon Institute for Health Research (IIS-Aragon), Zaragoza 50009, Spain; Biomedical Research Networking Center in Digestive and Hepatic Diseases (CIBERehd), Madrid, Spain; Fundacion ARAID, Government of Aragon, Zaragoza 50018, Spain
| | - Víctor Polo
- Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain; Departamento de Química Física, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Marta Martínez-Júlvez
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (Joint Units: BIFI-IQFR and GBsC-CSIC), Universidad de Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
17
|
Structure and mechanisms of ROS generation by NADPH oxidases. Curr Opin Struct Biol 2019; 59:91-97. [PMID: 31051297 DOI: 10.1016/j.sbi.2019.03.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/14/2019] [Accepted: 03/04/2019] [Indexed: 12/31/2022]
Abstract
NADPH oxidases (NOXs) are integral membrane enzymes that produce reactive oxygen species. Humans have seven NOX enzymes that feature a very similar catalytic core but distinct regulatory mechanisms. The recent structural elucidation of the NOX catalytic domains has been a step forward in the field. NADPH, FAD, and two hemes form a linear array of redox cofactors that transfer electrons across to the two sides of the membrane. Oxygen is reduced through an unusual outer sphere mechanism that does not involve any covalent intermediate with the heme iron. Several recent studies have expanded the roles of NOXs in cell signaling, innate immune response, and cell proliferation including oncogenic transformation. This work reinforces NOX-generated ROS as powerful signaling molecules. A challenging question is to understand the specific mechanisms of enzyme regulation and to harness the growing insight on NOXs' structure and biochemistry to generate more powerful small-molecule modulators of NOX activities.
Collapse
|
18
|
Guarneri A, van Berkel WJ, Paul CE. Alternative coenzymes for biocatalysis. Curr Opin Biotechnol 2019; 60:63-71. [PMID: 30711813 DOI: 10.1016/j.copbio.2019.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 01/01/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Alice Guarneri
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Willem Jh van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Caroline E Paul
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
19
|
Ceccon M, Millana Fananas E, Massari M, Mattevi A, Magnani F. Engineering stability in NADPH oxidases: A common strategy for enzyme production. Mol Membr Biol 2019; 34:67-76. [PMID: 30307338 DOI: 10.1080/09687688.2018.1535141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
NADPH oxidases (NOXs) are membrane enzymes whose sole function is the generation of reactive oxygen species. Humans have seven NOX isoenzymes that feature distinct functions in immune response and cell signaling but share the same catalytic core comprising a FAD-binding dehydrogenase domain and a heme-binding transmembrane domain. We previously described a mutation that stabilizes the dehydrogenase domain of a prokaryotic homolog of human NOX5. The thermostable mutant exhibited a large 19 °C increase in the apparent melting temperature (app Tm) and a much tighter binding of the FAD cofactor, which allowed the crystallization and structure determination of the domain holo-form. Here, we analyze the transferability of this mutation onto prokaryotic and eukaryotic full-length NOX enzymes. We found that the mutation exerts a significative stabilizing effect on the full-length NOX5 from both Cylindrospermum stagnale (app Tm increase of 8 °C) and Homo sapiens (app ΔTm of 2 °C). Enhanced thermal stability resulted in more homogeneous preparations of the bacterial NOX5 with less aggregation problems. Moreover, we also found that the mutation increases the overall expression of recombinant human NOX4 and NOX5 in mammalian cells. Such a 2-5-fold increase is mainly due to the lowered cell toxicity, which leads to higher biomasses. Because of the high sequence identity of the catalytic core within this family of enzymes, this strategy can be a general tool to boost the production of all NOXs.
Collapse
Affiliation(s)
- Marta Ceccon
- a Department of Biology and Biotechnology , University of Pavia , Pavia , Italy
| | | | - Marta Massari
- a Department of Biology and Biotechnology , University of Pavia , Pavia , Italy
| | - Andrea Mattevi
- a Department of Biology and Biotechnology , University of Pavia , Pavia , Italy
| | - Francesca Magnani
- a Department of Biology and Biotechnology , University of Pavia , Pavia , Italy
| |
Collapse
|
20
|
Abstract
Structure-function analysis of specific regions of NOX2 can be carried out after stable expression of site-directed mutagenesis-modified NOX2 in the X0-CGD PLB-985 cell model. Indeed, the generation of this human cellular model by Prof. MC Dinauer's team gave researchers the opportunity to gain a deeper understanding of functional regions of NOX2. With this model cell line, the functional impact of X+-CGD or of new mutations in NOX2 can be highlighted, as the biological material is not limited. PLB-985 cells transfected with various NOX2 mutations can be easily cultured and differentiated into neutrophils or monocytes/macrophages. Several measurements in intact mutated NOX2 PLB-985 cells can be carried out such as NOX2 expression, cytochrome b 558 spectrum, enzymatic activity, and assembly of the NADPH oxidase complex. Purified membranes or purified cytochrome b 558 from mutated NOX2 PLB-985 cells can be used for the study of the impact of specific mutations on NADPH oxidase or diaphorase activity, FAD incorporation, and NADPH or NADH binding in a cell-free assay system. Here, we describe a method to generate mutated NOX2 PLB-985 cells in order to analyze NOX2 structure-function relationships.
Collapse
Affiliation(s)
- Sylvain Beaumel
- Centre Diagnostic et Recherche CGD (CDiReC), Pôle Biologie, CHU Grenoble Alpes, Grenoble, France
| | - Marie José Stasia
- Centre Diagnostic et Recherche CGD (CDiReC), Pôle Biologie, CHU Grenoble Alpes, Grenoble, France.
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France.
| |
Collapse
|
21
|
Molecular mechanism of metabolic NAD(P)H-dependent electron-transfer systems: The role of redox cofactors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:233-258. [PMID: 30419202 DOI: 10.1016/j.bbabio.2018.11.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
NAD(P)H-dependent electron-transfer (ET) systems require three functional components: a flavin-containing NAD(P)H-dehydrogenase, one-electron carrier and metal-containing redox center. In principle, these ET systems consist of one-, two- and three-components, and the electron flux from pyridine nucleotide cofactors, NADPH or NADH to final electron acceptor follows a linear pathway: NAD(P)H → flavin → one-electron carrier → metal containing redox center. In each step ET is primarily controlled by one- and two-electron midpoint reduction potentials of protein-bound redox cofactors in which the redox-linked conformational changes during the catalytic cycle are required for the domain-domain interactions. These interactions play an effective ET reactions in the multi-component ET systems. The microsomal and mitochondrial cytochrome P450 (cyt P450) ET systems, nitric oxide synthase (NOS) isozymes, cytochrome b5 (cyt b5) ET systems and methionine synthase (MS) ET system include a combination of multi-domain, and their organizations display similarities as well as differences in their components. However, these ET systems are sharing of a similar mechanism. More recent structural information obtained by X-ray and cryo-electron microscopy (cryo-EM) analysis provides more detail for the mechanisms associated with multi-domain ET systems. Therefore, this review summarizes the roles of redox cofactors in the metabolic ET systems on the basis of one-electron redox potentials. In final Section, evolutionary aspects of NAD(P)H-dependent multi-domain ET systems will be discussed.
Collapse
|