1
|
Wang T, Zou Y, Meng H, Zheng P, Teng J, Huang N, Chen J. Securin acetylation prevents precocious separase activation and premature sister chromatid separation. Curr Biol 2024; 34:1295-1308.e5. [PMID: 38452759 DOI: 10.1016/j.cub.2024.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 01/08/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Lysine acetylation of non-histone proteins plays crucial roles in many cellular processes. In this study, we examine the role of lysine acetylation during sister chromatid separation in mitosis. We investigate the acetylation of securin at K21 by cell-cycle-dependent acetylome analysis and uncover its role in separase-triggered chromosome segregation during mitosis. Prior to the onset of anaphase, the acetylated securin via TIP60 prevents its degradation by the APC/CCDC20-mediated ubiquitin-proteasome system. This, in turn, restrains precocious activation of separase and premature separation of sister chromatids. Additionally, the acetylation-dependent stability of securin is also enhanced by its dephosphorylation. As anaphase approaches, HDAC1-mediated deacetylation of securin promotes its degradation, allowing released separase to cleave centromeric cohesin. Blocking securin deacetylation leads to longer anaphase duration and errors in chromosome segregation. Thus, this study illustrates the emerging role of securin acetylation dynamics in mitotic progression and genetic stability.
Collapse
Affiliation(s)
- Tianning Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; Breast Disease Diagnosis and Treatment Center/Department of Thyroid Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Yuhong Zou
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hui Meng
- Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Pengli Zheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junlin Teng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China.
| | - Ning Huang
- Institute of Neuroscience, Translational Medicine Institute, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jianguo Chen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100871, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Lee Y, Kim B, Jang HS, Huh WK. Atg1-dependent phosphorylation of Vps34 is required for dynamic regulation of the phagophore assembly site and autophagy in Saccharomyces cerevisiae. Autophagy 2023; 19:2428-2442. [PMID: 36803233 PMCID: PMC10392759 DOI: 10.1080/15548627.2023.2182478] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Macroautophagy/autophagy is a key catabolic pathway in which double-membrane autophagosomes sequester various substrates destined for degradation, enabling cells to maintain homeostasis and survive under stressful conditions. Several autophagy-related (Atg) proteins are recruited to the phagophore assembly site (PAS) and cooperatively function to generate autophagosomes. Vps34 is a class III phosphatidylinositol 3-kinase, and Atg14-containing Vps34 complex I plays essential roles in autophagosome formation. However, the regulatory mechanisms of yeast Vps34 complex I are still poorly understood. Here, we demonstrate that Atg1-dependent phosphorylation of Vps34 is required for robust autophagy activity in Saccharomyces cerevisiae. Following nitrogen starvation, Vps34 in complex I is selectively phosphorylated on multiple serine/threonine residues in its helical domain. This phosphorylation is important for full autophagy activation and cell survival. The absence of Atg1 or its kinase activity leads to complete loss of Vps34 phosphorylation in vivo, and Atg1 directly phosphorylates Vps34 in vitro, regardless of its complex association type. We also demonstrate that the localization of Vps34 complex I to the PAS provides a molecular basis for the complex I-specific phosphorylation of Vps34. This phosphorylation is required for the normal dynamics of Atg18 and Atg8 at the PAS. Together, our results reveal a novel regulatory mechanism of yeast Vps34 complex I and provide new insights into the Atg1-dependent dynamic regulation of the PAS.Abbreviations: ATG: autophagy-related; BARA: the repeated, autophagy-specific Co-IP: co-immunoprecipitation; GFP: green fluorescent protein; IP-MS: immunoprecipitation followed by tandem mass spectrometry; NTD: the N-terminal domain; PAS: phagophore assembly site; PtdIns3P: phosphatidylinositol-3-phosphate; PtdIns3K: phosphatidylinositol 3-kinase; SUR: structurally uncharacterized region; Vps34[KD]: Vps34D731N.
Collapse
Affiliation(s)
- Yongook Lee
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Bongkeun Kim
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hae-Soo Jang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Won-Ki Huh
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Qin LT, Huang SW, Huang ZG, Dang YW, Fang YY, He J, Niu YT, Lin CX, Wu JY, Wei ZX. Clinical value and potential mechanisms of BUB1B up-regulation in nasopharyngeal carcinoma. BMC Med Genomics 2022; 15:272. [PMID: 36577966 PMCID: PMC9798722 DOI: 10.1186/s12920-022-01412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) has insidious onset, late clinical diagnosis and high recurrence rate, which leads to poor quality of patient life. Therefore, it is necessary to further explore the pathogenesis and therapy targets of NPC. BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) was found to be up-regulated in a variety of cancers, but only two previous study showed that BUB1B was overexpressed in NPC and the sample size was small. The clinical role of BUB1B expression and its underlying mechanism in NPC require more in-depth research. Immunohistochemical samples and public RNA-seq data indicated that BUB1B protein and mRNA expression levels were up-regulated in NPC, and summary receiver operating characteristic curve indicated that BUB1B expression level had a strong ability to distinguish NPC tissues from non-NPC tissues. Gene ontology and Kyoto Encyclopedia of genes and genomes were performed and revealed that BUB1B and its related genes were mainly involved in cell cycle and DNA replication. Protein- Protein Interaction were built to interpret the BUB1B molecular mechanism. Histone deacetylase 2 (HDAC2) could be the upstream regulation factor of BUB1B, which was verified by Chromatin Immunoprecipitation Sequencing samples. In summary, BUB1B was highly expressed in NPC, and HDAC2 may affect cell cycle by regulating BUB1B to promote cancer progression.
Collapse
Affiliation(s)
- Li-Ting Qin
- grid.412594.f0000 0004 1757 2961Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Si-Wei Huang
- grid.412594.f0000 0004 1757 2961Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Zhi-Guang Huang
- grid.412594.f0000 0004 1757 2961Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Yi-Wu Dang
- grid.412594.f0000 0004 1757 2961Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Ye-Ying Fang
- grid.412594.f0000 0004 1757 2961Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Juan He
- grid.412594.f0000 0004 1757 2961Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Yi-Tong Niu
- grid.412594.f0000 0004 1757 2961Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Cai-Xing Lin
- grid.412594.f0000 0004 1757 2961Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Ji-Yun Wu
- grid.412594.f0000 0004 1757 2961Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| | - Zhu-Xin Wei
- grid.412594.f0000 0004 1757 2961Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, 6 Shuangyong Road, Nanning, 530021 People’s Republic of China
| |
Collapse
|
4
|
Park J, Yeu SY, Paik S, Kim H, Choi SY, Lee J, Jang J, Lee S, Koh Y, Lee H. Loss of BubR1 acetylation provokes replication stress and leads to complex chromosomal rearrangements. FEBS J 2021; 288:5925-5942. [PMID: 33955658 DOI: 10.1111/febs.15912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/25/2021] [Accepted: 05/04/2021] [Indexed: 11/27/2022]
Abstract
Accurate chromosomal segregation during mitosis is regulated by the spindle assembly checkpoint (SAC). SAC failure results in aneuploidy, a hallmark of cancer. However, many studies have suggested that aneuploidy alone is not oncogenic. We have reported that BubR1 acetylation deficiency in mice (K243R/+) caused spontaneous tumorigenesis via weakened SAC signaling and unstable chromosome-spindle attachment, resulting in massive chromosomal mis-segregation. In addition to aneuploidy, cells derived from K243R/+ mice exhibited moderate genetic instability and chromosomal translocation. Here, we investigated how the loss of BubR1 acetylation led to genetic instability and chromosomal rearrangement. To rescue all chromosomal abnormalities generated by the loss of BubR1 acetylation during development, K243R/+ mice were crossed with p53-deficient mice. Genome-wide sequencing and spectral karyotyping of tumors derived from these double-mutant mice revealed that BubR1 acetylation deficiency was associated with complex chromosomal rearrangements, including Robertsonian-like whole-arm translocations. By analyzing the telomeres and centromeres in metaphase chromosome spreads, we found that BubR1 acetylation deficiency increased the collapse of stalled replication forks, commonly referred to as replication stress, and led to DNA damage and chromosomal rearrangements. BubR1 mutations that are critical in interacting with PCAF acetyltransferase and acetylating K250, L249F and A251P, were found from human cancers. Furthermore, a subset of human cancer cells exhibiting whole-arm translocation also displayed defects in BubR1 acetylation, supporting that defects in BubR1 acetylation in mitosis contributes to tumorigenesis. Collectively, loss of BubR1 acetylation provokes replication stress, particularly at the telomeres, leading to genetic instability and chromosomal rearrangement.
Collapse
Affiliation(s)
- Jiho Park
- Department of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Song Y Yeu
- Department of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Sangjin Paik
- Department of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Hyungmin Kim
- Department of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Si-Young Choi
- Department of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Junyeop Lee
- Department of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Jinho Jang
- Department of Bioengineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Korea
| | - Semin Lee
- Department of Bioengineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Korea
| | - Hyunsook Lee
- Department of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Korea
| |
Collapse
|
5
|
Bloom CR, North BJ. Physiological relevance of post-translational regulation of the spindle assembly checkpoint protein BubR1. Cell Biosci 2021; 11:76. [PMID: 33892776 PMCID: PMC8066494 DOI: 10.1186/s13578-021-00589-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
BubR1 is an essential component of the spindle assembly checkpoint (SAC) during mitosis where it functions to prevent anaphase onset to ensure proper chromosome alignment and kinetochore-microtubule attachment. Loss or mutation of BubR1 results in aneuploidy that precedes various potential pathologies, including cancer and mosaic variegated aneuploidy (MVA). BubR1 is also progressively downregulated with age and has been shown to be directly involved in the aging process through suppression of cellular senescence. Post-translational modifications, including but not limited to phosphorylation, acetylation, and ubiquitination, play a critical role in the temporal and spatial regulation of BubR1 function. In this review, we discuss the currently characterized post-translational modifications to BubR1, the enzymes involved, and the biological consequences to BubR1 functionality and implications in diseases associated with BubR1. Understanding the molecular mechanisms promoting these modifications and their roles in regulating BubR1 is important for our current understanding and future studies of BubR1 in maintaining genomic integrity as well as in aging and cancer.
Collapse
Affiliation(s)
- Celia R Bloom
- Biomedical Sciences Department, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Brian J North
- Biomedical Sciences Department, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
6
|
Li G, Tian Y, Zhu WG. The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Front Cell Dev Biol 2020; 8:576946. [PMID: 33117804 PMCID: PMC7552186 DOI: 10.3389/fcell.2020.576946] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Genetic mutations and abnormal gene regulation are key mechanisms underlying tumorigenesis. Nucleosomes, which consist of DNA wrapped around histone cores, represent the basic units of chromatin. The fifth amino group (Nε) of histone lysine residues is a common site for post-translational modifications (PTMs), and of these, acetylation is the second most common. Histone acetylation is modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), and is involved in the regulation of gene expression. Over the past two decades, numerous studies characterizing HDACs and HDAC inhibitors (HDACi) have provided novel and exciting insights concerning their underlying biological mechanisms and potential anti-cancer treatments. In this review, we detail the diverse structures of HDACs and their underlying biological functions, including transcriptional regulation, metabolism, angiogenesis, DNA damage response, cell cycle, apoptosis, protein degradation, immunity and other several physiological processes. We also highlight potential avenues to use HDACi as novel, precision cancer treatments.
Collapse
Affiliation(s)
- Guo Li
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yuan Tian
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
7
|
Ehlén Å, Martin C, Miron S, Julien M, Theillet FX, Ropars V, Sessa G, Beaurepere R, Boucherit V, Duchambon P, El Marjou A, Zinn-Justin S, Carreira A. Proper chromosome alignment depends on BRCA2 phosphorylation by PLK1. Nat Commun 2020; 11:1819. [PMID: 32286328 PMCID: PMC7156385 DOI: 10.1038/s41467-020-15689-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
The BRCA2 tumor suppressor protein is involved in the maintenance of genome integrity through its role in homologous recombination. In mitosis, BRCA2 is phosphorylated by Polo-like kinase 1 (PLK1). Here we describe how this phosphorylation contributes to the control of mitosis. We identify a conserved phosphorylation site at T207 of BRCA2 that constitutes a bona fide docking site for PLK1 and is phosphorylated in mitotic cells. We show that BRCA2 bound to PLK1 forms a complex with the phosphatase PP2A and phosphorylated-BUBR1. Reducing BRCA2 binding to PLK1, as observed in BRCA2 breast cancer variants S206C and T207A, alters the tetrameric complex resulting in unstable kinetochore-microtubule interactions, misaligned chromosomes, faulty chromosome segregation and aneuploidy. We thus reveal a role of BRCA2 in the alignment of chromosomes, distinct from its DNA repair function, with important consequences on chromosome stability. These findings may explain in part the aneuploidy observed in BRCA2-mutated tumors.
Collapse
Affiliation(s)
- Åsa Ehlén
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Charlotte Martin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France
| | - Manon Julien
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France
- Department of Biology, École Normale Supérieure, 94230, Cachan, France
| | - François-Xavier Theillet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France
| | - Gaetana Sessa
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Romane Beaurepere
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Virginie Boucherit
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Patricia Duchambon
- Protein Expression and Purification Core Facility, Institut Curie, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
- INSERM U1196, 91405, Orsay, Cedex, France
| | - Ahmed El Marjou
- Protein Expression and Purification Core Facility, Institut Curie, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
- CNRS UMR144, 12 rue Lhomond, 75005, Paris, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France.
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France.
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France.
| |
Collapse
|
8
|
Bansal S, Tiwari S. Mechanisms for the temporal regulation of substrate ubiquitination by the anaphase-promoting complex/cyclosome. Cell Div 2019; 14:14. [PMID: 31889987 PMCID: PMC6927175 DOI: 10.1186/s13008-019-0057-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
The anaphase-promoting complex/cyclosome (APC/C) is a multi-subunit, multifunctional ubiquitin ligase that controls the temporal degradation of numerous cell cycle regulatory proteins to direct the unidirectional cell cycle phases. Several different mechanisms contribute to ensure the correct order of substrate modification by the APC/C complex. Recent advances in biochemical, biophysical and structural studies of APC/C have provided a deep mechanistic insight into the working of this complex ubiquitin ligase. This complex displays remarkable conformational flexibility in response to various binding partners and post-translational modifications, which together regulate substrate selection and catalysis of APC/C. Apart from this, various features and modifications of the substrates also influence their recognition and affinity to APC/C complex. Ultimately, temporal degradation of substrates depends on the kind of ubiquitin modification received, the processivity of APC/C, and other extrinsic mechanisms. This review discusses our current understanding of various intrinsic and extrinsic mechanisms responsible for 'substrate ordering' by the APC/C complex.
Collapse
Affiliation(s)
- Shivangee Bansal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
9
|
The function of histone acetylation in cervical cancer development. Biosci Rep 2019; 39:BSR20190527. [PMID: 30886064 PMCID: PMC6465204 DOI: 10.1042/bsr20190527] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer is the fourth most common female cancer in the world. It is well known that cervical cancer is closely related to high-risk human papillomavirus (HPV) infection. However, epigenetics has increasingly been recognized for its role in tumorigenesis. Epigenetics refers to changes in gene expression levels based on non-gene sequence changes, primarily through transcription or translation of genes regulation, thus affecting its function and characteristics. Typical post-translational modifications (PTMs) include acetylation, propionylation, butyrylation, malonylation and succinylation, among which the acetylation modification of lysine sites has been studied more clearly so far. The acetylation modification of lysine residues in proteins is involved in many aspects of cellular life activities, including carbon metabolism, transcriptional regulation, amino acid metabolism and so on. In this review, we summarize the latest discoveries on cervical cancer development arising from the aspect of acetylation, especially histone acetylation.
Collapse
|
10
|
Ruan W, Lim HH, Surana U. Mapping Mitotic Death: Functional Integration of Mitochondria, Spindle Assembly Checkpoint and Apoptosis. Front Cell Dev Biol 2019; 6:177. [PMID: 30687704 PMCID: PMC6335265 DOI: 10.3389/fcell.2018.00177] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/22/2018] [Indexed: 01/18/2023] Open
Abstract
Targeting the mitotic pathways of rapidly proliferating tumor cells has been an effective strategy in traditional cancer therapy. Chemotherapeutics such as taxanes and vinca alkaloids, which disrupt microtubule function, have enjoyed clinical success; however, the accompanying side effects, toxicity and multi drug resistance remain as serious concerns. The emerging classes of inhibitors targeting mitotic kinases and proteasome face their own set of challenges. It is hoped that elucidation of the regulatory interface between mitotic checkpoints, mitochondria and mitotic death will aid the development of more efficacious anti-mitotic agents and improved treatment protocols. The links between the spindle assembly checkpoint (SAC) and mitochondrial dynamics that control the progression of anti-mitotic agent-induced apoptosis have been under investigation for several years and the functional integration of these various signaling networks is now beginning to emerge. In this review, we highlight current research on the regulation of SAC, the death pathway and mitochondria with particular focus on their regulatory interconnections.
Collapse
Affiliation(s)
- Weimei Ruan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Hong Hwa Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Pharmacology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Trichostatin A induces Trypanosoma cruzi histone and tubulin acetylation: effects on cell division and microtubule cytoskeleton remodelling. Parasitology 2018; 146:543-552. [PMID: 30421693 DOI: 10.1017/s0031182018001828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, is a public health concern in Latin America. Epigenetic events, such as histone acetylation, affect DNA topology, replication and gene expression. Histone deacetylases (HDACs) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin. HDAC inhibitors, like trichostatin A (TSA), inhibit tumour cell proliferation and promotes ultrastructural modifications. In the present study, TSA effects on cell proliferation, viability, cell cycle and ultrastructure were evaluated, as well as on histone acetylation and tubulin expression of the T. cruzi epimastigote form. Protozoa proliferation and viability were reduced after treatment with TSA. Quantitative proteomic analyses revealed an increase in histone acetylation after 72 h of TSA treatment. Surprisingly, results obtained by different microscopy methodologies indicate that TSA does not affect chromatin compaction, but alters microtubule cytoskeleton dynamics and impair kDNA segregation, generating polynucleated cells with atypical morphology. Confocal fluorescence microscopy and flow cytometry assays indicated that treated cell microtubules were more intensely acetylated. Increases in tubulin acetylation may be directly related to the higher number of parasites in the G2/M phase after TSA treatment. Taken together, these results suggest that deacetylase inhibitors represent excellent tools for understanding trypanosomatid cell biology.
Collapse
|