1
|
Ibrahim MAA, Mohamed DEM, Abdeljawaad KAA, Abdelrahman AHM, Sayed SRM, El-Tayeb MA, Sidhom PA, Paré PW. Structural and Energetic Insights into the Binding of L- and D-Arginine Analogs with Neuropilin-1 (NRP1): Molecular Docking, Molecular Dynamics and DFT Calculations. Cell Biochem Biophys 2025:10.1007/s12013-025-01754-x. [PMID: 40253666 DOI: 10.1007/s12013-025-01754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
Neuropilin-1 (NRP1) is a transmembrane glycoprotein that binds numerous ligands, including vascular endothelial growth factor A (VEGFA) that stimulates blood vessel formation. Preclinical trials propose that NRP1 inhibition blocks neoplasm cell proliferation and slows tumor growth by suppressing angiogenesis. As such, VEGFA/NRP1 signaling is a potential target for carcinoma inhibition. Since arginine (Arg) regulates nutrient-responsive rapamycin signaling, which in turn regulates cell growth and metabolism, Arg, as well as simple structural variations of L- and D-Arg, were selected to study in-silico structural and energetic influences of such ligands on NRP1 signaling. Initially, AutoDock Vina1.1.2 software performance was assessed to predict binding modes of Arg analogs with NRP1 based on the available experimental data. Molecular docking and molecular dynamics (MD) simulations over 100 ns were run to inspect the potency of Arg analogs to bind with NRP1. Analog-NRP1 complex binding affinities (ΔGbinding) were evaluated using the MM/GBSA approach. Results indicated that L-/D-Agd- and L-/D-Agn-NRP1 complexes exhibited binding affinities greater than the co-crystallized L-homoarginine ligand (calc.-31.2 kcal.mol-1) with ΔGbinding values of -40.5/-40.6 and -40.0/-36.2 kcal.mol-1, respectively. Structural and energetic analyses were performed to examine further L-/D-Agd and L-/D-Agn. Quantum mechanical calculations were performed to confirm the outcomes obtained from docking computations and MD simulations.
Collapse
Affiliation(s)
- Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt.
- Department of Engineering, College of Engineering and Technology, University of Technology and Applied Sciences, Nizwa, Sultanate of Oman.
- School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.
| | - Dina E M Mohamed
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Khlood A A Abdeljawaad
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Alaa H M Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Mohamed A El-Tayeb
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Peter A Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Paul W Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
2
|
Hosseini F, Azadmehr A, Saleki K, Ahmadifard M, Oladnabi M, Shirzad M, Javanian M. Neuropilin-1 as a Neuroinflammatory Entry Factor for SARS-CoV-2 Is Attenuated in Vaccinated COVID-19 Patients: A Case-Control Study. Health Sci Rep 2025; 8:e70630. [PMID: 40196385 PMCID: PMC11973440 DOI: 10.1002/hsr2.70630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Background and Aim COVID-19 is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) as a pandemic infectious disease. So far, it has been known that this virus uses several receptors to enter the host cell, one of which is neuropilin-1 (NRP1). Also, one of the main causes of clinical manifestations, severity of disease, and mortality of patients is cytokine storm syndrome, one of these cytokines being interleukin (IL)-6. Our aim was to study the level of expression of NRP1 and IL-6 genes in COVID-19 patients by using peripheral blood mononuclear cells (PBMCs). Materials and Methods Our study population included the test group (80 patients with COVID-19) and the control group (30 healthy individuals). Venous blood was taken from all subjects. After isolating PBMCs from blood using Ficoll, RNA was extracted. Then, cDNA synthesis, the expression level of NRP1 and IL-6 compared to GAPDH housekeeping gene was measured by real-time PCR. Results The level of NRP1 gene expression was increased significantly in COVID-19 different groups compared to the control group. Surprisingly, it was observed that the amount of NRP1 gene decreased in the vaccinated group compared to nonvaccinated groups. IL-6 gene expression was also significantly increased in all groups except vaccinated patients compared to the control group. Also, the results indicated that there was a positive and statistically considerable relationship between IL-6 expression level and NRP1 expression level (p = 0.03). Conclusion The significant increase in the expression of NRP1 and IL-6 genes in COVID-19 patients, especially in moderate and severe cases, indicates their potential involvement in the progression of the disease, which may serve as biomarkers of disease severity. Also, since these genes play an important role in causing severe inflammation, cytokine storm, and immunopathological complications of COVID-19, further investigations maybe needed to achieve therapeutic goals to control COVID-19 and similar diseases.
Collapse
Affiliation(s)
- Faezeh Hosseini
- Student Research Committee, Babol University of Medical SciencesBabolIran
- Cellular and Molecular Biology Research CenterHealth Research Institute, Babol University of Medical SciencesBabolIran
| | - Abbas Azadmehr
- Cellular and Molecular Biology Research CenterHealth Research Institute, Babol University of Medical SciencesBabolIran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical SciencesBabolIran
- USERN OfficeBabol University of Medical SciencesBabolIran
- Department of E‐Learning in Medical SciencesFaculty of Medical Education and Learning Technologies, Shahid Beheshti University of Medical SciencesTehranIran
| | - Mohamadreza Ahmadifard
- Cellular and Molecular Biology Research CenterHealth Research Institute, Babol University of Medical SciencesBabolIran
| | - Morteza Oladnabi
- Ischemic Disorders Research Center, Golestan University of Medical SciencesGorganIran
| | - Moein Shirzad
- Cellular and Molecular Biology Research CenterHealth Research Institute, Babol University of Medical SciencesBabolIran
| | - Mostafa Javanian
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical SciencesBabolIran
| |
Collapse
|
3
|
Tymecka D, Redkiewicz P, Lipiński PFJ, Misicka A. Peptidomimetic inhibitors of the VEGF-A 165/NRP-1 complex obtained by modification of the C-terminal arginine. Amino Acids 2024; 56:49. [PMID: 39181965 PMCID: PMC11344719 DOI: 10.1007/s00726-024-03411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Inhibitors of the interaction between Neuropilin-1 (NRP-1) and Vascular Endothelial Growth Factor-A165 (VEGF-A165) hold significant promise as therapeutic and diagnostic agents directed against cancers overexpressing NRP-1. In our efforts in this field, a few series of strong and fairly stable peptide-like inhibitors of the general formula Lys(Har)1-Xaa2-Xaa3-Arg4 have been previously discovered. In the current work, we focused on Lys(Har)-Dap/Dab-Pro-Arg sequence. The aim was to examine whether replacing C-terminal Arg with its homologs and mimetics would yield more stable yet still potent inhibitors. Upon considering the results of modelling and other factors, ten novel analogues with Xaa4 = homoarginine (Har), 2-amino-4-guanidino-butyric acid (Agb), 2-amino-3-guanidino-propionic acid (Agp), citrulline (Cit), 4-aminomethyl-phenylalanine [Phe(4-CH2-NH2)] were designed, synthesized and evaluated. Two of the proposed modifications resulted in inhibitors with activity slightly lower [e.g. IC50 = 14.3 μM for Lys(Har)-Dab-Pro-Har and IC50 = 19.8 μM for Lys(Har)-Dab-Pro-Phe(4-CH2-NH2)] than the parent compounds [e.g. IC50 = 4.7 μM for Lys(Har)-Dab-Pro-Arg]. What was a surprise to us, the proteolytic stability depended more on position two of the sequence than on position four. The Dab2-analogues exhibited half-life times beyond 60 h. Our results build up the knowledge on the structural requirements that effective VEGF-A165/NRP-1 inhibitors should fulfil.
Collapse
Affiliation(s)
- Dagmara Tymecka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.
| | - Patrycja Redkiewicz
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Piotr F J Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.
| |
Collapse
|
4
|
Ibrahim MAA, Ali SSM, Abdeljawaad KAA, Abdelrahman AHM, Gabr GA, Shawky AM, Mekhemer GAH, Sidhom PA, Paré PW, Hegazy MEF. In-silico natural product database mining for novel neuropilin-1 inhibitors: molecular docking, molecular dynamics and binding energy computations. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2023.2182623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
- School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sara S. M. Ali
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Khlood A. A. Abdeljawaad
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Alaa H. M. Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Gamal A. Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gamal A. H. Mekhemer
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Peter A. Sidhom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Paul W. Paré
- Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | |
Collapse
|
5
|
Afiadenyo M, Adams L, Agoni C, Moane S, Mckeon-Bennett M, Obiri-Yeboah D, Singh J. Computational Screening of Neuropilin-1 Unveils Novel Potential Anti-SARS-CoV-2 Therapeutics. Chem Biodivers 2023; 20:e202301227. [PMID: 37878727 DOI: 10.1002/cbdv.202301227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Neuropilin 1 (NRP-1) inhibition has shown promise in reducing the infectivity of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and preventing the virus entry into nerve tissues, thereby mitigating neurological symptoms in COVID-19 patients. In this study, we employed virtual screening, including molecular docking, Molecular Dynamics (MD) simulation, and Molecular Mechanics-Poisson Boltzmann Surface Area (MM-PBSA) calculations, to identify potential NRP-1 inhibitors. From a compendium of 1930 drug-like natural compounds, we identified five potential leads: CNP0435132, CNP0435311, CNP0424372, CNP0429647, and CNP0427474, displaying robust binding energies of -8.2, -8.1, -10.7, -8.2, and -8.2 kcal/mol, respectively. These compounds demonstrated interactions with critical residues Tyr297, Trp301, Thr316, Asp320, Ser346, Thr349, and Tyr353 located within the b1 subdomain of NRP-1. Furthermore, MD simulations and MM-PBSA calculations affirmed the stability of the complexes formed, with average root mean square deviation, radius of gyration, and solvent accessible surface area values of 0.118 nm, 1.516 nm, and 88.667 nm2 , respectively. Notably, these lead compounds were estimated to penetrate the blood-brain barrier and displayed antiviral properties, with Pa values ranging from 0.414 to 0.779. The antagonistic effects of these lead compounds merit further investigation, as they hold the potential to serve as foundational scaffolds for the development of innovative therapeutics aimed at reducing the neuroinfectivity of SARS-CoV-2.
Collapse
Affiliation(s)
- Michael Afiadenyo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Latif Adams
- Technological University of Shannon: Midlands Midwest Midlands Campus, Athlone, Ireland
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Clement Agoni
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Belfield D04, V1 W8, Ireland
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- West African Centre for Computational Research and Innovation, Ghana
| | - Siobhan Moane
- Technological University of Shannon: Midlands Midwest Midlands Campus, Athlone, Ireland
| | | | - Dorcas Obiri-Yeboah
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Jasdeep Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, New Delhi, Delhi, India
| |
Collapse
|
6
|
Goudiaby I, Malliavin TE, Mocchetti E, Mathiot S, Acherar S, Frochot C, Barberi-Heyob M, Guillot B, Favier F, Didierjean C, Jelsch C. New Crystal Form of Human Neuropilin-1 b1 Fragment with Six Electrostatic Mutations Complexed with KDKPPR Peptide Ligand. Molecules 2023; 28:5603. [PMID: 37513474 PMCID: PMC10385628 DOI: 10.3390/molecules28145603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neuropilin 1 (NRP1), a cell-surface co-receptor of a number of growth factors and other signaling molecules, has long been the focus of attention due to its association with the development and the progression of several types of cancer. For example, the KDKPPR peptide has recently been combined with a photosensitizer and a contrast agent to bind NRP1 for the detection and treatment by photodynamic therapy of glioblastoma, an aggressive brain cancer. The main therapeutic target is a pocket of the fragment b1 of NRP1 (NRP1-b1), in which vascular endothelial growth factors (VEGFs) bind. In the crystal packing of native human NRP1-b1, the VEGF-binding site is obstructed by a crystallographic symmetry neighbor protein, which prevents the binding of ligands. Six charged amino acids located at the protein surface were mutated to allow the protein to form a new crystal packing. The structure of the mutated fragment b1 complexed with the KDKPPR peptide was determined by X-ray crystallography. The variant crystallized in a new crystal form with the VEGF-binding cleft exposed to the solvent and, as expected, filled by the C-terminal moiety of the peptide. The atomic interactions were analyzed using new approaches based on a multipolar electron density model. Among other things, these methods indicated the role played by Asp320 and Glu348 in the electrostatic steering of the ligand in its binding site. Molecular dynamics simulations were carried out to further analyze the peptide binding and motion of the wild-type and mutant proteins. The simulations revealed that specific loops interacting with the peptide exhibited mobility in both the unbound and bound forms.
Collapse
Affiliation(s)
- Ibrahima Goudiaby
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (I.G.); (E.M.); (B.G.)
- Université Assane Seck de Ziguinchor, Laboratoire de Chimie et de Physique des Matériaux (LCPM), 523 Ziguinchor, Senegal
| | | | - Eva Mocchetti
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (I.G.); (E.M.); (B.G.)
| | - Sandrine Mathiot
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (I.G.); (E.M.); (B.G.)
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France
| | - Céline Frochot
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | | | - Benoît Guillot
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (I.G.); (E.M.); (B.G.)
| | - Frédérique Favier
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (I.G.); (E.M.); (B.G.)
| | - Claude Didierjean
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (I.G.); (E.M.); (B.G.)
| | - Christian Jelsch
- Université de Lorraine, CNRS, CRM2, F-54000 Nancy, France; (I.G.); (E.M.); (B.G.)
| |
Collapse
|
7
|
Yang S, Dai J, Aweya JJ, Lin R, Weng W, Xie Y, Jin R. The Antibacterial Activity and Pickering Emulsion Stabilizing Effect of a Novel Peptide, SA6, Isolated from Salt-Fermented Penaeus vannamei. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-023-03000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Larue L, Kenzhebayeva B, Al-Thiabat MG, Jouan-Hureaux V, Mohd-Gazzali A, Wahab HA, Boura C, Yeligbayeva G, Nakan U, Frochot C, Acherar S. tLyp-1: A peptide suitable to target NRP-1 receptor. Bioorg Chem 2023; 130:106200. [PMID: 36332316 DOI: 10.1016/j.bioorg.2022.106200] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/02/2022]
Abstract
Targeting vascular endothelial growth factor receptor (VEFGR) and its co-receptor neuropilin-1 (NRP-1) is an interesting vascular strategy. tLyp-1 is a tumor-homing and penetrating peptide of 7 amino acids (CGNKRTR). It is a truncated form of Lyp-1 (CGNKRTRGC), which is known to target NRP-1 receptor, with high affinity and specificity. It is mediated by endocytosis via C-end rule (CendR) internalization pathway. The aim of this study is to evaluate the importance of each amino acid in the tLyp-1 sequence through alanine-scanning (Ala-scan) technique, during which each of the amino acid in the sequence was systematically replaced by alanine to produce 7 different analogues. In silico approach through molecular docking and molecular dynamics are employed to understand the interaction between the peptide and its analogues with the NRP-1 receptor, followed by in vitro ligand binding assay study. The C-terminal Arg is crucial in the interaction of tLyp-1 with NRP-1 receptor. Substituting this residue dramatically reduces the affinity of this peptide which is clearly seen in this study. Lys-4 is also important in the interaction, which is confirmed via the in vitro study and the MM-PBSA analysis. The finding in this study supports the CendR, in which the presence of R/K-XX-R/K motif is essential in the binding of a ligand with NRP-1 receptor. This presented work will serve as a guide in the future work pertaining the development of active targeting agent towards NRP-1 receptor.
Collapse
Affiliation(s)
- Ludivine Larue
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France; Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | - Bibigul Kenzhebayeva
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France; Institute of Geology and Oil-gas Business, Satbayev University, Almaty 050013, Kazakhstan
| | - Mohammad G Al-Thiabat
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | | | - Amirah Mohd-Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Habibah A Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Cédric Boura
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Gulzhakhan Yeligbayeva
- Institute of Geology and Oil-gas Business, Satbayev University, Almaty 050013, Kazakhstan
| | - Ulantay Nakan
- Institute of Geology and Oil-gas Business, Satbayev University, Almaty 050013, Kazakhstan
| | - Céline Frochot
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| |
Collapse
|
9
|
Neuropilin (NRPs) Related Pathological Conditions and Their Modulators. Int J Mol Sci 2022; 23:ijms23158402. [PMID: 35955539 PMCID: PMC9368954 DOI: 10.3390/ijms23158402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 01/08/2023] Open
Abstract
Neuropilin 1 (NRP1) represents one of the two homologous neuropilins (NRP, splice variants of neuropilin 2 are the other) found in all vertebrates. It forms a transmembrane glycoprotein distributed in many human body tissues as a (co)receptor for a variety of different ligands. In addition to its physiological role, it is also associated with various pathological conditions. Recently, NRP1 has been discovered as a coreceptor for the SARS-CoV-2 viral entry, along with ACE2, and has thus become one of the COVID-19 research foci. However, in addition to COVID-19, the current review also summarises its other pathological roles and its involvement in clinical diseases like cancer and neuropathic pain. We also discuss the diversity of native NRP ligands and perform a joint analysis. Last but not least, we review the therapeutic roles of NRP1 and introduce a series of NRP1 modulators, which are typical peptidomimetics or other small molecule antagonists, to provide the medicinal chemistry community with a state-of-the-art overview of neuropilin modulator design and NRP1 druggability assessment.
Collapse
|
10
|
Eldrid C, Zloh M, Fotinou C, Yelland T, Yu L, Mota F, Selwood DL, Djordjevic S. VEGFA, B, C: Implications of the C-Terminal Sequence Variations for the Interaction with Neuropilins. Biomolecules 2022; 12:biom12030372. [PMID: 35327564 PMCID: PMC8945599 DOI: 10.3390/biom12030372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) are the key regulators of blood and lymphatic vessels’ formation and function. Each of the proteins from the homologous family VEGFA, VEGFB, VEGFC and VEGFD employs a core cysteine-knot structural domain for the specific interaction with one or more of the cognate tyrosine kinase receptors. Additional diversity is exhibited by the involvement of neuropilins–transmembrane co-receptors, whose b1 domain contains the binding site for the C-terminal sequence of VEGFs. Although all relevant isoforms of VEGFs that interact with neuropilins contain the required C-terminal Arg residue, there is selectivity of neuropilins and VEGF receptors for the VEGF proteins, which is reflected in the physiological roles that they mediate. To decipher the contribution made by the C-terminal sequences of the individual VEGF proteins to that functional differentiation, we determined structures of molecular complexes of neuropilins and VEGF-derived peptides and examined binding interactions for all neuropilin-VEGF pairs experimentally and computationally. While X-ray crystal structures and ligand-binding experiments highlighted similarities between the ligands, the molecular dynamics simulations uncovered conformational preferences of VEGF-derived peptides beyond the C-terminal arginine that contribute to the ligand selectivity of neuropilins. The implications for the design of the selective antagonists of neuropilins’ functions are discussed.
Collapse
Affiliation(s)
- Charles Eldrid
- Structural and Molecular Biology, ISMB, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK; (C.E.); (C.F.); (T.Y.); (L.Y.)
| | - Mire Zloh
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK;
- Faculty of Pharmacy, University Business Academy, 2100 Novi Sad, Serbia
| | - Constantina Fotinou
- Structural and Molecular Biology, ISMB, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK; (C.E.); (C.F.); (T.Y.); (L.Y.)
| | - Tamas Yelland
- Structural and Molecular Biology, ISMB, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK; (C.E.); (C.F.); (T.Y.); (L.Y.)
| | - Lefan Yu
- Structural and Molecular Biology, ISMB, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK; (C.E.); (C.F.); (T.Y.); (L.Y.)
| | - Filipa Mota
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; (F.M.); (D.L.S.)
| | - David L. Selwood
- Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK; (F.M.); (D.L.S.)
| | - Snezana Djordjevic
- Structural and Molecular Biology, ISMB, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK; (C.E.); (C.F.); (T.Y.); (L.Y.)
- Correspondence: ; Tel.: +44-(0)20-7679-2230
| |
Collapse
|
11
|
Molecular dynamics simulations, docking and MMGBSA studies of newly designed peptide-conjugated glucosyloxy stilbene derivatives with tumor cell receptors. Mol Divers 2022; 26:2717-2743. [PMID: 35037187 DOI: 10.1007/s11030-021-10354-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
In this work, for the first time, we designed derivatives of beta-D-glucosyloxy-3-hydroxy-trans-stiblene-2-carboxylic acid (GHS), by conjugating GHS with tumor targeting peptides RPARPAR and GGKRPAR to target over-expressed receptors in tumor cells. The sequences RPARPAR and GGKRPAR are known to target the neuropilin1 (NRP1) receptor due to the C-terminal Arg domain; however, their effectiveness has never been examined with other commonly over-expressed receptors in tumor cells, particularly of chronic lymphocytic leukemia that include integrin α1β1 and CD22. By conjugating these peptides with GHS, which is known for its inherent anti-cancer properties, the goal is to further enhance tumor cell targeting by developing compounds that can target multiple receptors. The physicochemical properties of the conjugates and individual peptides were analyzed using Turbomole and COSMOthermX20 in order to determine their hydrogen bond accepting and donating capabilities. The web server POCASA was used in order to determine the surface cavities and binding pockets of the three receptors. To explore the binding affinities, we conducted molecular docking studies with the peptides and the conjugates with each of the receptors. After molecular docking, the complexes were analyzed using Protein-Ligand Interaction Profiler to determine the types of interactions involved. Molecular dynamics simulation studies were conducted to explore the stability of the receptor-ligand complexes. Our results indicated that in most cases the conjugates showed higher binding and stability with the receptors. Additionally, highly stable complexes of conjugates were obtained with CD22, NRP1 and in most cases with the integrin α1β1 receptor as well. The binding energies were calculated for each of the receptor ligand complexes through trajectory analysis using MMGBSA studies. SwissADME studies revealed that the compounds showed low GI absorption and were not found to be CYP inhibitors and had bioavailability score that would allow them to be considered as potential drug candidates. Overall, our results for the first time show that the designed conjugates can target multiple over-expressed receptors in tumor cells and may be potentially developed as future therapeutics for targeting tumor cells.
Collapse
|
12
|
Mota F, Yelland T, Hutton JA, Parker J, Patsiarika A, Chan AWE, O'Leary A, Fotinou C, Martin JF, Zachary IC, Djordjevic S, Frankel P, Selwood DL. Peptides Derived from Vascular Endothelial Growth Factor B Show Potent Binding to Neuropilin-1. Chembiochem 2022; 23:e202100463. [PMID: 34647407 PMCID: PMC8776337 DOI: 10.1002/cbic.202100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Indexed: 12/01/2022]
Abstract
Vascular endothelial growth factors (VEGFs) regulate significant pathways in angiogenesis, myocardial and neuronal protection, metabolism, and cancer progression. The VEGF-B growth factor is involved in cell survival, anti-apoptotic and antioxidant mechanisms, through binding to VEGF receptor 1 and neuropilin-1 (NRP1). We employed surface plasmon resonance technology and X-ray crystallography to analyse the molecular basis of the interaction between VEGF-B and the b1 domain of NRP1, and developed VEGF-B C-terminus derived peptides to be used as chemical tools for studying VEGF-B - NRP1 related pathways. Peptide lipidation was used as a means to stabilise the peptides. VEGF-B-derived peptides containing a C-terminal arginine show potent binding to NRP1-b1. Peptide lipidation increased binding residence time and improved plasma stability. A crystal structure of a peptide with NRP1 demonstrated that VEGF-B peptides bind at the canonical C-terminal arginine binding site. VEGF-B C-terminus imparts higher affinity for NRP1 than the corresponding VEGF-A165 region. This tight binding may impact on the activity and selectivity of the full-length protein. The VEGF-B167 derived peptides were more effective than VEGF-A165 peptides in blocking functional phosphorylation events. Blockers of VEGF-B function have potential applications in diabetes and non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Filipa Mota
- Wolfson Institute for Biomedical ResearchUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Tamas Yelland
- The Institute of Structural and Molecular BiologyUniversity College LondonUK
| | - Jennie A. Hutton
- Wolfson Institute for Biomedical ResearchUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Jennifer Parker
- Centre for Cardiovascular Biology & MedicineBHF Laboratories at University College LondonUK
| | - Anastasia Patsiarika
- Wolfson Institute for Biomedical ResearchUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - A. W. Edith Chan
- Wolfson Institute for Biomedical ResearchUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Andrew O'Leary
- Centre for Cardiovascular Biology & MedicineBHF Laboratories at University College LondonUK
| | - Constantina Fotinou
- The Institute of Structural and Molecular BiologyUniversity College LondonUK
| | - John F. Martin
- Centre for Cardiovascular Biology & MedicineBHF Laboratories at University College LondonUK
| | - Ian C. Zachary
- Centre for Cardiovascular Biology & MedicineBHF Laboratories at University College LondonUK
| | - Snezana Djordjevic
- The Institute of Structural and Molecular BiologyUniversity College LondonUK
| | - Paul Frankel
- Institute of Cardiovascular ScienceUniversity College LondonUK
| | - David L. Selwood
- Wolfson Institute for Biomedical ResearchUniversity College LondonGower StreetLondonWC1E 6BTUK
| |
Collapse
|
13
|
Gül Ş. In silico drug repositioning against human NRP1 to block SARS-CoV-2 host entry. Turk J Biol 2021; 45:442-458. [PMID: 34803446 PMCID: PMC8573850 DOI: 10.3906/biy-2012-52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/08/2021] [Indexed: 12/21/2022] Open
Abstract
Despite COVID-19 turned into a pandemic, no approved drug for the treatment or globally available vaccine is out yet. In such a global emergency, drug repurposing approach that bypasses a costly and long-time demanding drug discovery process is an effective way in search of finding drugs for the COVID-19 treatment. Recent studies showed that SARS-CoV-2 uses neuropilin-1 (NRP1) for host entry. Here we took advantage of structural information of the NRP1 in complex with C-terminal of spike (S) protein of SARS-CoV-2 to identify drugs that may inhibit NRP1 and S protein interaction. U.S. Food and Drug Administration (FDA) approved drugs were screened using docking simulations. Among top drugs, well-tolerated drugs were selected for further analysis. Molecular dynamics (MD) simulations of drugs-NRP1 complexes were run for 100 ns to assess the persistency of binding. MM/GBSA calculations from MD simulations showed that eltrombopag, glimepiride, sitagliptin, dutasteride, and ergotamine stably and strongly bind to NRP1. In silico Alanine scanning analysis revealed that Tyr297, Trp301, and Tyr353 amino acids of NRP1 are critical for drug binding. Validating the effect of drugs analyzed in this paper by experimental studies and clinical trials will expedite the drug discovery process for COVID-19.
Collapse
Affiliation(s)
- Şeref Gül
- Department of Chemical and Biological Engineering, Koç University, İstanbul Turkey.,Biotechnology Division, Department of Biology, Faculty of Science, İstanbul University, İstanbul Turkey
| |
Collapse
|
14
|
Jobe A, Vijayan R. Characterization of peptide binding to the SARS-CoV-2 host factor neuropilin. Heliyon 2021; 7:e08251. [PMID: 34722943 PMCID: PMC8540010 DOI: 10.1016/j.heliyon.2021.e08251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/25/2021] [Accepted: 10/21/2021] [Indexed: 11/04/2022] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global health concern. It is now well established that the spike (S) protein of SARS-CoV-2 interacts with its primary host receptor, the angiotensin converting enzyme 2 (ACE2). Additionally, the interaction of S with the neuropilin (NRP) receptor has been reported to facilitate viral entry. SARS-CoV-2 S protein binds to neuropilin-1 (NRP1) by virtue of a CendR motif which terminates with either an arginine or lysine. Furthermore, a number of different peptide sequences have been reported to bind to the same site in NRP1 including vascular endothelial growth factor A and other viral proteins. To gain a deeper understanding of additional factors besides the C-terminal arginine that may favour high NRP1 binding, several modelled peptides were investigated using triplicate 1 μs molecular dynamics simulations. A C-end histidine failed to exhibit strong NRP1 affinity. Some previously reported factors that increase binding affinity and secure NRP1 receptor activation was observed in the NRP1-peptide complexes studied and such complexes had higher molecular mechanics-generalized Born surface area based free energy of binding. Additionally, the results also highlight the relevance of an exposed arginine at its canonical location as capping it blocked arginine from engaging key residues at the NRP1 receptor site that are indispensable for functional binding; and that the presence of proline reinforces the C-terminal arginine. Given that stable NRP1 binding is crucial for viral uptake, stable interactions should be accounted for in the design of potential drugs and treatment routes to target or disrupt this interface, considering the S1-NRP1 interaction as well as its endogenous VEGF-A ligand that is associated with nociception.
Collapse
Affiliation(s)
- Amie Jobe
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.,The Big Data Analytics Center, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
15
|
Lico C, Tanno B, Marchetti L, Novelli F, Giardullo P, Arcangeli C, Pazzaglia S, Podda MS, Santi L, Bernini R, Baschieri S, Mancuso M. Tomato Bushy Stunt Virus Nanoparticles as a Platform for Drug Delivery to Shh-Dependent Medulloblastoma. Int J Mol Sci 2021; 22:10523. [PMID: 34638864 PMCID: PMC8509062 DOI: 10.3390/ijms221910523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma (MB) is a primary central nervous system tumor affecting mainly young children. New strategies of drug delivery are urgent to treat MB and, in particular, the SHH-dependent subtype-the most common in infants-in whom radiotherapy is precluded due to the severe neurological side effects. Plant virus nanoparticles (NPs) represent an innovative solution for this challenge. Tomato bushy stunt virus (TBSV) was functionally characterized as a carrier for drug targeted delivery to a murine model of Shh-MB. The TBSV NPs surface was genetically engineered with peptides for brain cancer cell targeting, and the modified particles were produced on a large scale using Nicotiana benthamiana plants. Tests on primary cultures of Shh-MB cells allowed us to define the most efficient peptides able to induce specific uptake of TBSV. Immunofluorescence and molecular dynamics simulations supported the hypothesis that the specific targeting of the NPs was mediated by the interaction of the peptides with their natural partners and reinforced by the presentation in association with the virus. In vitro experiments demonstrated that the delivery of Doxorubicin through the chimeric TBSV allowed reducing the dose of the chemotherapeutic agent necessary to induce a significant decrease in tumor cells viability. Moreover, the systemic administration of TBSV NPs in MB symptomatic mice, independently of sex, confirmed the ability of the virus to reach the tumor in a specific manner. A significant advantage in the recognition of the target appeared when TBSV NPs were functionalized with the CooP peptide. Overall, these results open new perspectives for the use of TBSV as a vehicle for the targeted delivery of chemotherapeutics to MB in order to reduce early and late toxicity.
Collapse
Affiliation(s)
- Chiara Lico
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy;
| | - Barbara Tanno
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| | - Luca Marchetti
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| | - Flavia Novelli
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| | - Paola Giardullo
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| | - Caterina Arcangeli
- Laboratory of Health and Environment, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (C.A.); (M.S.P.)
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| | - Maurizio S. Podda
- Laboratory of Health and Environment, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (C.A.); (M.S.P.)
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (L.S.); (R.B.)
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo De Lellis, 01100 Viterbo, Italy; (L.S.); (R.B.)
| | - Selene Baschieri
- Laboratory of Biotechnology, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy;
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy; (B.T.); (L.M.); (F.N.); (P.G.); (S.P.)
| |
Collapse
|
16
|
Perez-Miller S, Patek M, Moutal A, de Haro PD, Cabel CR, Thorne CA, Campos SK, Khanna R. Novel Compounds Targeting Neuropilin Receptor 1 with Potential To Interfere with SARS-CoV-2 Virus Entry. ACS Chem Neurosci 2021; 12:1299-1312. [PMID: 33787218 PMCID: PMC8029449 DOI: 10.1021/acschemneuro.0c00619] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 Spike protein interferes with pain signaling. Here, we report confirmed hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physicochemical properties. Using ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Further, two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.
Collapse
Affiliation(s)
- Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Marcel Patek
- Bright Rock Path Consulting, LLC, Tucson, Arizona
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Paz Duran de Haro
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Carly R. Cabel
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
| | - Curtis A. Thorne
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
| | - Samuel K. Campos
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
- Department of Immunobiology, College of Medicine, University of Arizona
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona, USA
- Regulonix LLC, Tucson, AZ, USA
| |
Collapse
|
17
|
The Role of VEGF Receptors as Molecular Target in Nuclear Medicine for Cancer Diagnosis and Combination Therapy. Cancers (Basel) 2021; 13:cancers13051072. [PMID: 33802353 PMCID: PMC7959315 DOI: 10.3390/cancers13051072] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/24/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The rapid development of diagnostic and therapeutic methods of the cancer treatment causes that these diseases are becoming better known and the fight against them is more and more effective. Substantial contribution in this development has nuclear medicine that enables very early cancer diagnosis and early start of the so-called targeted therapy. This therapeutic concept compared to the currently used chemotherapy, causes much fewer undesirable side effects, due to targeting a specific lesion in the body. This review article discusses the possible applications of radionuclide-labelled tracers (peptides, antibodies or synthetic organic molecules) that can visualise cancer cells through pathological blood vessel system in close tumour microenvironment. Hence, at a very early step of oncological disease, targeted therapy can involve in tumour formation and growth. Abstract One approach to anticancer treatment is targeted anti-angiogenic therapy (AAT) based on prevention of blood vessel formation around the developing cancer cells. It is known that vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) play a pivotal role in angiogenesis process; hence, application of angiogenesis inhibitors can be an effective approach in anticancer combination therapeutic strategies. Currently, several types of molecules have been utilised in targeted VEGF/VEGFR anticancer therapy, including human VEGF ligands themselves and their derivatives, anti-VEGF or anti-VEGFR monoclonal antibodies, VEGF binding peptides and small molecular inhibitors of VEGFR tyrosine kinases. These molecules labelled with diagnostic or therapeutic radionuclides can become, respectively, diagnostic or therapeutic receptor radiopharmaceuticals. In targeted anti-angiogenic therapy, diagnostic radioagents play a unique role, allowing the determination of the emerging tumour, to monitor the course of treatment, to predict the treatment outcomes and, first of all, to refer patients for AAT. This review provides an overview of design, synthesis and study of radiolabelled VEGF/VEGFR targeting and imaging agents to date. Additionally, we will briefly discuss their physicochemical properties and possible application in combination targeted radionuclide tumour therapy.
Collapse
|
18
|
Abstract
Neuropilin-1 (NRP-1), a member of a family of signaling proteins, was shown to serve as an entry factor and potentiate SARS Coronavirus 2 (SARS-CoV-2) infectivity in vitro. This cell surface receptor with its disseminated expression is important in angiogenesis, tumor progression, viral entry, axonal guidance, and immune function. NRP-1 is implicated in several aspects of a SARS-CoV-2 infection including possible spread through the olfactory bulb and into the central nervous system and increased NRP-1 RNA expression in lungs of severe Coronavirus Disease 2019 (COVID-19). Up-regulation of NRP-1 protein in diabetic kidney cells hint at its importance in a population at risk of severe COVID-19. Involvement of NRP-1 in immune function is compelling, given the role of an exaggerated immune response in disease severity and deaths due to COVID-19. NRP-1 has been suggested to be an immune checkpoint of T cell memory. It is unknown whether involvement and up-regulation of NRP-1 in COVID-19 may translate into disease outcome and long-term consequences, including possible immune dysfunction. It is prudent to further research NRP-1 and its possibility of serving as a therapeutic target in SARS-CoV-2 infections. We anticipate that widespread expression, abundance in the respiratory and olfactory epithelium, and the functionalities of NRP-1 factor into the multiple systemic effects of COVID-19 and challenges we face in management of disease and potential long-term sequelae.
Collapse
Affiliation(s)
- Bindu S. Mayi
- Department of Basic Sciences, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, Florida, United States of America
- * E-mail:
| | - Jillian A. Leibowitz
- Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, Florida, United States of America
| | - Arden T. Woods
- Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, Florida, United States of America
| | - Katherine A. Ammon
- USF Morsani College of Medicine, Tampa, Florida, United States of America
| | - Alphonse E. Liu
- Dr. Kiran C. Patel College of Osteopathic Medicine, Fort Lauderdale, Florida, United States of America
| | - Aarti Raja
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, Florida, United States of America
| |
Collapse
|
19
|
Perez-Miller S, Patek M, Moutal A, Cabel CR, Thorne CA, Campos SK, Khanna R. In silico identification and validation of inhibitors of the interaction between neuropilin receptor 1 and SARS-CoV-2 Spike protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.22.308783. [PMID: 32995772 PMCID: PMC7523098 DOI: 10.1101/2020.09.22.308783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 spike protein interferes with pain signaling. Here, we report hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physico-chemical properties. Using an ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that almost all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.
Collapse
Affiliation(s)
- Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, USA
| | - Marcel Patek
- Bright Rock Path Consulting, LLC, Tucson, Arizona
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Carly R. Cabel
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
| | - Curtis A. Thorne
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
| | - Samuel K. Campos
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
- Department of Immunobiology, College of Medicine, University of Arizona
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, USA
- Regulonix LLC, 1555 E. Entrada Segunda, Tucson, AZ 85718, USA
| |
Collapse
|
20
|
Neuropilin: Handyman and Power Broker in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:31-67. [PMID: 32030684 DOI: 10.1007/978-3-030-35582-1_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neuropilin-1 and neuropilin-2 form a small family of transmembrane receptors, which, due to the lack of a cytosolic protein kinase domain, act primarily as co-receptors for various ligands. Performing at the molecular level both the executive and organizing functions of a handyman as well as of a power broker, they are instrumental in controlling the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. In this setting, the various neuropilin ligands and interaction partners on various cells of the tumor microenvironment, such as cancer cells, endothelial cells, cancer-associated fibroblasts, and immune cells, are surveyed. The suitability of various neuropilin-targeting substances and the intervention in neuropilin-mediated interactions is considered as a possible building block of tumor therapy.
Collapse
|
21
|
Conole D, Myers SH, Mota F, Hobbs AJ, Selwood DL. Biophysical screening methods for extracellular domain peptide receptors, application to natriuretic peptide receptor C ligands. Chem Biol Drug Des 2019; 93:1011-1020. [PMID: 30218492 PMCID: PMC6879014 DOI: 10.1111/cbdd.13395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/15/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022]
Abstract
Endothelium-derived C-type natriuretic peptide possesses cytoprotective and anti-atherogenic functions that regulate vascular homeostasis. The vasoprotective effects of C-type natriuretic peptide are somewhat mediated by the natriuretic peptide receptor C, suggesting that this receptor represents a novel therapeutic target for the treatment of cardiovascular diseases. In order to facilitate our drug discovery efforts, we have optimized an array of biophysical methods including surface plasmon resonance, fluorescence polarization and thermal shift assays to aid in the design, assessment and characterization of small molecule agonist interactions with natriuretic peptide receptors. Assay conditions are investigated to explore the feasibility and dynamic range of each method, and peptide-based agonists and antagonists are used as controls to validate these conditions. Once established, each technique was compared and contrasted with respect to their drug discovery utility. We foresee that such techniques will facilitate the discovery and development of potential therapeutic agents for NPR-C and other large extracellular domain membrane receptors.
Collapse
Affiliation(s)
- Daniel Conole
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Samuel H. Myers
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Filipa Mota
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| | - Adrian J. Hobbs
- William Harvey Research InstituteHeart Centre, Barts & The London School of MedicineQueen Mary University of LondonLondonUK
| | - David L. Selwood
- Wolfson Institute for Biomedical ResearchUniversity College LondonLondonUK
| |
Collapse
|
22
|
Fedorczyk B, Lipiński PFJ, Puszko AK, Tymecka D, Wilenska B, Dudka W, Perret GY, Wieczorek R, Misicka A. Triazolopeptides Inhibiting the Interaction between Neuropilin-1 and Vascular Endothelial Growth Factor-165. Molecules 2019; 24:molecules24091756. [PMID: 31064153 PMCID: PMC6539594 DOI: 10.3390/molecules24091756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 12/11/2022] Open
Abstract
Inhibiting the interaction of neuropilin-1 (NRP-1) with vascular endothelial growth factor (VEGF) has become an interesting mechanism for potential anticancer therapies. In our previous works, we have obtained several submicromolar inhibitors of this interaction, including branched pentapeptides of general structure Lys(Har)-Xxx-Xxx-Arg. With the intent to improve the proteolytic stability of our inhibitors, we turned our attention to 1,4-disubstituted 1,2,3-triazoles as peptide bond isosteres. In the present contribution, we report the synthesis of 23 novel triazolopeptides along with their inhibitory activity. The compounds were synthesized using typical peptide chemistry methods, but with a conversion of amine into azide completely on solid support. The inhibitory activity of the synthesized derivatives spans from 9.2% to 58.1% at 10 μM concentration (the best compound Lys(Har)-GlyΨ[Trl]GlyΨ[Trl]Arg, 3, IC50 = 8.39 μM). Synthesized peptidotriazoles were tested for stability in human plasma and showed remarkable resistance toward proteolysis, with half-life times far exceeding 48 h. In vitro cell survival test resulted in no significant impact on bone marrow derived murine cells 32D viability. By means of molecular dynamics, we were able to propose a binding mode for compound 3 and discuss the observed structure–activity relationships.
Collapse
Affiliation(s)
| | - Piotr F J Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland.
| | - Anna K Puszko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Dagmara Tymecka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Beata Wilenska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Wioleta Dudka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland.
| | - Gerard Y Perret
- Université Paris 13, Sorbonne Paris Cité, INSERM U1125, 74 rue Marcel Cachin, 93017 Bobigny, France.
| | - Rafal Wieczorek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland.
| |
Collapse
|
23
|
Niland S, Eble JA. Neuropilins in the Context of Tumor Vasculature. Int J Mol Sci 2019; 20:ijms20030639. [PMID: 30717262 PMCID: PMC6387129 DOI: 10.3390/ijms20030639] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 01/09/2023] Open
Abstract
Neuropilin-1 and Neuropilin-2 form a small family of plasma membrane spanning receptors originally identified by the binding of semaphorin and vascular endothelial growth factor. Having no cytosolic protein kinase domain, they function predominantly as co-receptors of other receptors for various ligands. As such, they critically modulate the signaling of various receptor tyrosine kinases, integrins, and other molecules involved in the regulation of physiological and pathological angiogenic processes. This review highlights the diverse neuropilin ligands and interacting partners on endothelial cells, which are relevant in the context of the tumor vasculature and the tumor microenvironment. In addition to tumor cells, the latter contains cancer-associated fibroblasts, immune cells, and endothelial cells. Based on the prevalent neuropilin-mediated interactions, the suitability of various neuropilin-targeted substances for influencing tumor angiogenesis as a possible building block of a tumor therapy is discussed.
Collapse
Affiliation(s)
- Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, 48149 Münster, Germany.
| |
Collapse
|
24
|
Peng K, Bai Y, Zhu Q, Hu B, Xu Y. Targeting VEGF–neuropilin interactions: a promising antitumor strategy. Drug Discov Today 2019; 24:656-664. [PMID: 30315890 DOI: 10.1016/j.drudis.2018.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Kewen Peng
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Bai
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qihua Zhu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Hu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yungen Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
25
|
Wang G, Shi B, Fu Y, Zhao S, Qu K, Guo Q, Li K, She J. Hypomethylated gene NRP1 is co-expressed with PDGFRB and associated with poor overall survival in gastric cancer patients. Biomed Pharmacother 2019; 111:1334-1341. [PMID: 30841447 DOI: 10.1016/j.biopha.2019.01.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) has been an increasingly serious problem in public health. However, there is still a lack of efficient approach to diagnosis and treatment in time, especially in the field of targeted therapy. Increasing evidences demonstrated that DNA methylation plays an essential role in tumorigenesis and progression of GC. Thus the present study aims to identify DNA methylation-based prognostic biomarkers in GC. Two methylation array datasets (GSE25869 and GSE30601) and RNA-seq based gene profiling dataset (TCGA-STAD) were employed for exploring candidate DNA methylation-based biomarkers. Univariate Cox regression analysis was used to select the most efficient prognostic genes in GC patients. Weighted gene correlation network analysis (WGCNA) was performed to screen the cluster of co-expressed genes. As a result, our data proved that NRP1 was a hypomethylated / upregulated gene in GC tissues, and PDGFRB was strongly co-expressed with it. Both of them were significantly associated with the overall survival of patients. More importantly, high expression levels of NRP1 and PDGFRB were associated with malignant phenotypes in GC patients, including Laurén histological diffuse type and higher histological grade. Patients carrying high expression level of NRP1 and PDGFRB had a nearly two-fold increased death risk than others. In summary, the hypomethylated gene, NRP1, and its co-expressed gene, PDGFRB, were significantly correlated with tumor malignant phenotypes, which might serve as potential prognostic biomarkers for GC patients.
Collapse
Affiliation(s)
- Guanghui Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bin Shi
- Department of Gastroenterology Surgery, Liaocheng People's Hospital, Taishan Medical College, Liaocheng, 252000, Shandong, China
| | - Yunong Fu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shasha Zhao
- Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qingbo Guo
- Department of Clinical Laboratory, Yidu Central Hospital of Weifang, Weifang, 262500, Shandong, China
| | - Ke Li
- Department of Central Laboratory, Liaocheng People's Hospital, Taishan Medical College, Liaocheng, 252000, Shandong, China.
| | - Junjun She
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
26
|
De Rosa L, Di Stasi R, D'Andrea LD. Pro-angiogenic peptides in biomedicine. Arch Biochem Biophys 2018; 660:72-86. [DOI: 10.1016/j.abb.2018.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022]
|
27
|
Peach CJ, Mignone VW, Arruda MA, Alcobia DC, Hill SJ, Kilpatrick LE, Woolard J. Molecular Pharmacology of VEGF-A Isoforms: Binding and Signalling at VEGFR2. Int J Mol Sci 2018; 19:E1264. [PMID: 29690653 PMCID: PMC5979509 DOI: 10.3390/ijms19041264] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/14/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Vascular endothelial growth factor-A (VEGF-A) is a key mediator of angiogenesis, signalling via the class IV tyrosine kinase receptor family of VEGF Receptors (VEGFRs). Although VEGF-A ligands bind to both VEGFR1 and VEGFR2, they primarily signal via VEGFR2 leading to endothelial cell proliferation, survival, migration and vascular permeability. Distinct VEGF-A isoforms result from alternative splicing of the Vegfa gene at exon 8, resulting in VEGFxxxa or VEGFxxxb isoforms. Alternative splicing events at exons 5⁻7, in addition to recently identified posttranslational read-through events, produce VEGF-A isoforms that differ in their bioavailability and interaction with the co-receptor Neuropilin-1. This review explores the molecular pharmacology of VEGF-A isoforms at VEGFR2 in respect to ligand binding and downstream signalling. To understand how VEGF-A isoforms have distinct signalling despite similar affinities for VEGFR2, this review re-evaluates the typical classification of these isoforms relative to the prototypical, “pro-angiogenic” VEGF165a. We also examine the molecular mechanisms underpinning the regulation of VEGF-A isoform signalling and the importance of interactions with other membrane and extracellular matrix proteins. As approved therapeutics targeting the VEGF-A/VEGFR signalling axis largely lack long-term efficacy, understanding these isoform-specific mechanisms could aid future drug discovery efforts targeting VEGF receptor pharmacology.
Collapse
Affiliation(s)
- Chloe J Peach
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Viviane W Mignone
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
- CAPES-University of Nottingham Programme in Drug Discovery, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Maria Augusta Arruda
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
- CAPES-University of Nottingham Programme in Drug Discovery, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Diana C Alcobia
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Laura E Kilpatrick
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands NG7 2UH, UK.
| |
Collapse
|
28
|
Chen D, Li Y, Zhao M, Tan W, Li X, Savidge T, Guo W, Fan X. Effective lead optimization targeting the displacement of bridging receptor–ligand water molecules. Phys Chem Chem Phys 2018; 20:24399-24407. [DOI: 10.1039/c8cp04118k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Enhancing the binding affinities of ligands by means of lead modifications that displace bridging water molecules at protein–ligand interfaces is an important and widely studied lead optimization strategy.
Collapse
Affiliation(s)
- Deliang Chen
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry
- Chemistry and Chemical Engineering College
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Yibao Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry
- Chemistry and Chemical Engineering College
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Mingming Zhao
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry
- Chemistry and Chemical Engineering College
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Wen Tan
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry
- Chemistry and Chemical Engineering College
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Xun Li
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry
- Chemistry and Chemical Engineering College
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Tor Savidge
- Department of Pathology & Immunology
- Baylor College of Medicine
- Houston
- USA
- Texas Children's Microbiome Center
| | - Wei Guo
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry
- Chemistry and Chemical Engineering College
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Xiaolin Fan
- Jiangxi Key Laboratory of Organo-Pharmaceutical Chemistry
- Chemistry and Chemical Engineering College
- Gannan Normal University
- Ganzhou
- P. R. China
| |
Collapse
|