1
|
Costa EP, Brandão-Costa RMP, Albuquerque WWC, Nascimento TP, Sales Conniff AE, Cardoso KBB, Neves AGD, Batista JMDS, Porto ALF. Extracellular collagenase isolated from Streptomyces antibioticus UFPEDA 3421: purification and biochemical characterization. Prep Biochem Biotechnol 2024; 54:260-271. [PMID: 37355277 DOI: 10.1080/10826068.2023.2225090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Collagenases are proteases able to degrade native and denatured collagen, with broad applications such as leather, food, and pharmaceutical industries. The aim of this research was to purify and characterize a collagenase from Streptomyces antibioticus. In the present work, the coffee ground substrate provided conditions to obtaining high collagenase activity (377.5 U/mL) using anion-exchange DEAE-Sephadex G50 chromatographic protocol. SDS-PAGE revealed the metallo-collagenase with a single band of 41.28 kDa and was able to hydrolyzed type I and type V collagen producing bioactive peptides that delayed the coagulation time. The enzyme activity showed stability across a range of pH (6.0-11) and temperature (30-55 °C) with optima at pH 7.0 and 60 °C, respectively. Activators include Mg+2, Ca+2, Na+, K+, while full inhibition was given by other tested metalloproteinase inhibitors. Kinetic parameters (Km of 27.14 mg/mol, Vmax of 714.29 mg/mol/min, Kcat of 79.9 s-1 and Kcat/Km of 2.95 mL/mg/s) and thermodynamic parameters (Ea of 65.224 kJ/mol, ΔH of 62.75 kJ/mol, ΔS of 1.96 J/mol, ΔG of 62.16 kJ/mol, ΔGE-S of 8.18 kJ/mol and ΔGE-T of -2.64 kJ/mol) were also defined. Coffee grounds showed to be an interesting source to obtaining a collagenase able to produce bioactive peptides with anticoagulant activity.
Collapse
Affiliation(s)
- Elizianne Pereira Costa
- Department of Animal Morphology and Physiology, Rural Federal University of Pernambuco, Recife, PE, Brazil
- Center of Biological Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | | | | | | - Ana Lúcia Figueiredo Porto
- Department of Animal Morphology and Physiology, Rural Federal University of Pernambuco, Recife, PE, Brazil
- Center of Biological Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
2
|
Plekhova NG, Chernenko IN, Korolev DV, Kozlovskaya EP, Stepanyugina AK, Shevchenko OV, Dmitrenok PS, Shumatov VB. Evaluation of Collagenase Activity from Crab Hepatopancreas in Different Model Systems. Bull Exp Biol Med 2024; 176:457-460. [PMID: 38491258 DOI: 10.1007/s10517-024-06046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 03/18/2024]
Abstract
The effect of Kamchatka crab hepatopancreas containing three collagenolytic isoenzymes Collagenase KK and proteinases of Streptomyces lavendulae on metabolic activity and cell death were carried out on in vitro models. It was shown that changes in the protein structure under the influence of Collagenase KK occurred earlier than under the effect of bacterial proteinases. At the same time, activity of Collagenase KK was significantly higher than that of bacterial proteinases (p<0.01). Both preparations had a pronounced time- and dose-dependent effects on metabolic activity of cells. Collagenase KK had low cytotoxic effect, and cells mainly died by apoptosis. Thus, hepatopancreas collagenase has a high activity and proapoptotic effect on cells and can be used in low concentrations for enzymatic disaggregation of tissues.
Collapse
Affiliation(s)
- N G Plekhova
- Pacific State Medical University, Ministry of Health of the Russian Federation, Vladivostok, Russia.
| | - I N Chernenko
- Pacific State Medical University, Ministry of Health of the Russian Federation, Vladivostok, Russia
| | - D V Korolev
- Pacific State Medical University, Ministry of Health of the Russian Federation, Vladivostok, Russia
| | - E P Kozlovskaya
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - A K Stepanyugina
- Pacific State Medical University, Ministry of Health of the Russian Federation, Vladivostok, Russia
| | - O V Shevchenko
- Pacific State Medical University, Ministry of Health of the Russian Federation, Vladivostok, Russia
| | - P S Dmitrenok
- G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - V B Shumatov
- Pacific State Medical University, Ministry of Health of the Russian Federation, Vladivostok, Russia
| |
Collapse
|
3
|
Potekaev NN, Borzykh OB, Shnayder NA, Petrova MM, Karpova EI, Nasyrova RF. Collagen synthesis in the skin: genetic and epigenetic aspects. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-217-226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
One of the most important functions of the skin, mechanical, is provided by collagen fibers and their interaction with other elements of the extracellular matrix. Synthesis of collagen fibers is a complex multistep process. At each stage, disturbances may occur, leading, as a result, to a decrease in the mechanical properties of the connective tissue. In clinical practice, disorders of collagen synthesis are manifested through increased skin laxity and looseness and premature aging. In addition to the clinical presentation, it is important for the cosmetologist and dermatologist to understand the etiology and pathogenesis of collagenopathies. The present review summarizes and systematizes available information about the role of genetic and epigenetic factors in the synthesis of collagen fibers in the skin. Understanding the etiology of collagen synthesis disorders can allow doctors to prescribe pathogenetically grounded treatment with the most effective results and minimize adverse reactions.
Collapse
Affiliation(s)
- N. N. Potekaev
- Pirogov Russian National Research Medical University; Moscow Research and Practical Center for Dermatology and Cosmetology, Department of Healthcare
| | - O. B. Borzykh
- V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - N. A. Shnayder
- V.F. Voino-Yasenetsky Krasnoyarsk State Medical University; Bekhterev Psychoneurological Research Institute
| | - M. M. Petrova
- V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
| | - E. I. Karpova
- Pirogov Russian National Research Medical University
| | - R. F. Nasyrova
- Bekhterev Psychoneurological Research Institute; Kazan Federal University
| |
Collapse
|
4
|
Xiao H, Liu X, Feng Y, Zheng L, Zhao M, Huang M. Secretion of collagenases by Saccharomyces cerevisiae for collagen degradation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:89. [PMID: 36031598 PMCID: PMC9420286 DOI: 10.1186/s13068-022-02186-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/13/2022] [Indexed: 11/22/2022]
Abstract
Background The production and processing of animal-based products generates many collagen-rich by-products, which have received attention both for exploitation to increase their added value and to reduce their negative environmental impact. The collagen-rich by-products can be hydrolyzed by collagenases for further utilization. Therefore, collagenases are of benefit for efficient collagen materials processing. An alternative and safe way to produce secreted collagenases is needed. Results Two collagenases from Hathewaya histolytica, ColG and ColH, were successfully secreted by the yeast Saccharomyces cerevisiae. Compared with the native signal peptide of collagenase, the α-factor leader is more efficient in guiding collagenase secretion. Collagenase secretion was significantly increased in YPD medium by supplementing with calcium and zinc ions. Recombinant collagenase titers reached 68 U/mL and 55 U/mL for ColG and ColH, respectively. Collagenase expression imposed metabolic perturbations on yeast cells; substrate consumption, metabolites production and intracellular cofactor levels changed in engineered strains. Both recombinant collagenases from yeast could hydrolyze soluble and insoluble collagen materials. Recombinant ColG and ColH showed a synergistic effect on efficient collagen digestion. Conclusions Sufficient calcium and zinc ions are essential for active collagenase production by yeast. Collagenase secretion was increased by optimization of expression cassettes. Collagenase expression imposed metabolic burden and cofactor perturbations on yeast cells, which could be improved through metabolic engineering. Our work provides a useful way to produce collagenases for collagen resource utilization. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02186-y.
Collapse
|
5
|
van Leeuwen HC, Roelofs D, Corver J, Hensbergen P. Phylogenetic analysis of the bacterial Pro-Pro-endopeptidase domain reveals a diverse family including secreted and membrane anchored proteins. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100024. [PMID: 34841315 PMCID: PMC8610288 DOI: 10.1016/j.crmicr.2021.100024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/21/2022] Open
Abstract
Bacterial Pro-Pro-endopeptidase (PPEP) is the latest member of the metalloendopeptidase class (E.C. 3.4.24.89). PPEP homologs are found in two firmicutes orders, clostridiales and bacillales spread over 9 genera and more than 130 species. Some PPEP homologs have acquired additional anchor domains that bind noncovalently to various elements of the bacterial peptidoglycan cell wall. Prototype family members, PPEP-1 and PPEP-2, target bacterial surface adhesion proteins, but homologs could target other extracellular proteins.
Pro-Pro-endopeptidases (PPEP, EC 3.4.24.89) are secreted, zinc metalloproteases that have the unusual capacity to cleave a peptide bond between two prolines, a bond that is generally less sensitive to proteolytic cleavage. Two well studied members of the family are PPEP-1 and PPEP-2, produced by Clostridioides difficile, a human pathogen, and Paenibacillus alvei, a bee secondary invader, respectively. Both proteases seem to be involved in mediating bacterial adhesion by cleaving cell surface anchor proteins on the bacterium itself. By using basic alignment and phylogenetic profiling analysis, this work shows that the complete family of proteins that contain a PPEP domain includes proteins from more than 130 species spread over 9 genera. These analyses also suggest that the PPEP domain spread through horizontal gene transfer events between species within the Firmicutes’ classes Bacilli and Clostridia. Bacterial species containing PPEP homologs are found in diverse habitats, varying from human pathogens and gut microbiota to free-living bacteria, which were isolated from various environments, including extreme conditions such as hot springs, desert soil and salt lakes. The phylogenetic tree reveals the relationships between family members and suggests that smaller subgroups could share cleavage specificity, substrates and functional similarity. Except for PPEP-1 and PPEP-2, no cleavage specificity, specific physiological target, or function has been assigned for any of the other PPEP-family members. Some PPEP proteins have acquired additional domains that recognize and bind noncovalently to various elements of the bacterial peptidoglycan cell-wall, anchoring these PPEPs. Secreted or anchored to the cell-wall surface PPEP proteins seem to perform various functions.
Collapse
Affiliation(s)
- Hans C van Leeuwen
- Department of CBRN Protection, Netherlands Organization for Applied Scientific Research TNO, Lange Kleiweg 137, 2288 GJ Rijswijk, the Netherlands
| | - Dick Roelofs
- KeyGene, Agro Business Park 90, 6708 PW Wageningen, the Netherlands
| | - Jeroen Corver
- Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Paul Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC Leiden, the Netherlands
| |
Collapse
|
6
|
Abstract
One of the most important functions of the skin, i.e., protection from mechanical damage, is ensured by collagen fibers and their interaction with other elements in the extracellular matrix. Collagen fiber turnover is a complex multi-stage process. At each stage, a disruption may occur, leading to a decrease in the mechanical properties of the connective tissue. Clinically, collagen formation disorders manifest themselves as increased flabbiness and looseness of the skin and as early signs of facial aging. In addition to the clinical picture, it is important for cosmetologists and dermatologists to understand the etiology and pathogenesis of collagenopathies. In our review, we summarized and systematized the available information concerning the role of genetic and epigenetic factors in skin collagen fiber turnover. Furthermore, we focused on the functions of different types of collagens present in the skin. Understanding the etiology of impaired collagen formation can allow doctors to prescribe pathogenetically based treatments, achieve the most effective results, and minimize adverse reactions.
Collapse
|
7
|
Neural Crest-Derived Chondrocytes Isolation for Tissue Engineering in Regenerative Medicine. Cells 2020. [PMID: 32295228 DOI: 10.3390/cells9040962.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chondrocyte transplantation has been successfully tested and proposed as a clinical procedure aiming to repair articular cartilage defects. However, the isolation of chondrocytes and the optimization of the enzymatic digestion process, as well as their successful in vitro expansion, remain the main challenges in cartilage tissue engineering. In order to address these issues, we investigated the performance of recombinant collagenases in tissue dissociation assays with the aim of isolating chondrocytes from bovine nasal cartilage in order to establish the optimal enzyme blend to ensure the best outcomes of the overall procedure. We show, for the first time, that collagenase H activity alone is required for effective cartilage digestion, resulting in an improvement in the yield of viable cells. The extracted chondrocytes proved able to grow and activate differentiation/dedifferentiation programs, as assessed by morphological and gene expression analyses.
Collapse
|
8
|
Salamone M, Rigogliuso S, Nicosia A, Tagliavia M, Campora S, Cinà P, Bruno C, Ghersi G. Neural Crest-Derived Chondrocytes Isolation for Tissue Engineering in Regenerative Medicine. Cells 2020; 9:cells9040962. [PMID: 32295228 PMCID: PMC7226976 DOI: 10.3390/cells9040962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 01/04/2023] Open
Abstract
Chondrocyte transplantation has been successfully tested and proposed as a clinical procedure aiming to repair articular cartilage defects. However, the isolation of chondrocytes and the optimization of the enzymatic digestion process, as well as their successful in vitro expansion, remain the main challenges in cartilage tissue engineering. In order to address these issues, we investigated the performance of recombinant collagenases in tissue dissociation assays with the aim of isolating chondrocytes from bovine nasal cartilage in order to establish the optimal enzyme blend to ensure the best outcomes of the overall procedure. We show, for the first time, that collagenase H activity alone is required for effective cartilage digestion, resulting in an improvement in the yield of viable cells. The extracted chondrocytes proved able to grow and activate differentiation/dedifferentiation programs, as assessed by morphological and gene expression analyses.
Collapse
Affiliation(s)
- Monica Salamone
- Abiel s.r.l, c/o University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (S.C.); (P.C.); (C.B.)
| | - Salvatrice Rigogliuso
- Abiel s.r.l, c/o University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (S.C.); (P.C.); (C.B.)
| | - Aldo Nicosia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (A.N.); (M.T.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies [STEBICEF], University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Marcello Tagliavia
- Institute for Biomedical Research and Innovation-National Research Council (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (A.N.); (M.T.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies [STEBICEF], University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Simona Campora
- Abiel s.r.l, c/o University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (S.C.); (P.C.); (C.B.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies [STEBICEF], University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Paolo Cinà
- Abiel s.r.l, c/o University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (S.C.); (P.C.); (C.B.)
| | - Carmelo Bruno
- Abiel s.r.l, c/o University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (S.C.); (P.C.); (C.B.)
| | - Giulio Ghersi
- Abiel s.r.l, c/o University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy; (M.S.); (S.R.); (S.C.); (P.C.); (C.B.)
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies [STEBICEF], University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
- Correspondence:
| |
Collapse
|
9
|
Mechanistic Insight into the Binding and Swelling Functions of Prepeptidase C-Terminal (PPC) Domains from Various Bacterial Proteases. Appl Environ Microbiol 2019; 85:AEM.00611-19. [PMID: 31076429 DOI: 10.1128/aem.00611-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/29/2019] [Indexed: 02/03/2023] Open
Abstract
The bacterial prepeptidase C-terminal (PPC) domain can be found in the C termini of a wide variety of proteases that are secreted by marine bacteria. However, the functions of these PPC domains remain unknown due to a lack of systematic research. Here, the binding and swelling abilities of eight PPC domains from six different proteases were compared systematically via scanning electron microscopy (SEM), enzyme assays, and fluorescence spectroscopy. These PPC domains all possess the ability to bind and swell insoluble collagen. PPC domains can expose collagen monomers but cannot disrupt the pyridinoline cross-links or unwind the collagen triple helix. This ability can play a synergistic role alongside collagenase in collagen hydrolysis. Site-directed mutagenesis of the PPC domain from Vibrio anguillarum showed that the conserved polar and aromatic residues Y6, D26, D28, Y30, W42, E53, C55, and Y65 and the hydrophobic residues V10, V18, and I57 played key roles in substrate binding. Molecular dynamic simulations were conducted to investigate the interactions between PPC domains and collagen. Most PPC domains have a similar mechanism for binding collagen, and the hydrophobic binding pocket of PPC domains may play an important role in collagen binding. This study sheds light on the substrate binding mechanisms of PPC domains and reveals a new function for the PPC domains of bacterial proteases in substrate degradation.IMPORTANCE Prepeptidase C-terminal (PPC) domains commonly exist in the C termini of marine bacterial proteases. Reports examining PPC have been limited, and its functions remain unclear. In this study, eight PPCs from six different bacteria were examined. Most of the PPCs possessed the ability to bind collagen, feathers, and chitin, and all PPCs could significantly swell insoluble collagen. PPCs can expose collagen monomers but cannot disrupt pyridinoline cross-links or unwind the collagen triple helix. This swelling ability may also play synergistic roles in collagen hydrolysis. Comparative structural analyses and the examination of PPC mutants revealed that the hydrophobic binding pockets of PPCs may play important roles in collagen binding. This study provides new insights into the functions and ecological significance of PPCs, and the molecular mechanism of the collagen binding of PPCs was clarified, which is beneficial for the protein engineering of highly active PPCs and collagenase in the pharmaceutical industry and of artificial biological materials.
Collapse
|