1
|
Kozuki S, Kabata M, Sakurai S, Iwaisako K, Nishimura T, Toi M, Yamamoto T, Toyoshima F. Periportal hepatocyte proliferation at midgestation governs maternal glucose homeostasis in mice. Commun Biol 2023; 6:1226. [PMID: 38049528 PMCID: PMC10695921 DOI: 10.1038/s42003-023-05614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
The maternal liver is challenged by metabolic demands throughout pregnancy. However, hepatocyte dynamics and their physiological significance in pregnancy remain unclear. Here, we show in mice that hepatocyte proliferation is spatiotemporally regulated in each liver lobular zone during pregnancy, with transient proliferation of periportal and pericentral hepatocytes during mid and late gestation, respectively. Using adeno-associated virus (AAV)-8-mediated expression of the cell cycle inhibitor p21 in hepatocytes, we show that inhibition of hepatocyte proliferation during mid, but not late, gestation impairs liver growth. Transcriptionally, genes involved in glucose/glycogen metabolism are downregulated in late pregnancy when midgestational hepatocyte proliferation is attenuated. In addition, hepatic glycogen storage is abolished, with concomitant elevated blood glucose concentrations, glucose intolerance, placental glycogen deposition, and fetal overgrowth. Laser capture microdissection and RNA-seq analysis of each liver lobular zone show zone-specific changes in the transcriptome during pregnancy and identify genes that are periportally expressed at midgestation, including the hyaluronan-mediated motility receptor (Hmmr). Knockdown of Hmmr in hepatocytes by AAV8-shHmmr suppresses periportal hepatocyte proliferation at midgestation and induces impaired hepatic glycogen storage, glucose intolerance, placental glycogen deposition and fetal overgrowth. Our results suggest that periportal hepatocyte proliferation during midgestation is critical for maternal glycogen metabolism and fetal size.
Collapse
Affiliation(s)
- Satoshi Kozuki
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
- Department of Mammalian and Regulatory Networks, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Satoko Sakurai
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
- Department of Target Therapy Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tomomi Nishimura
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Medical Risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, 606-8507, Japan
| | - Fumiko Toyoshima
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
- Department of Mammalian and Regulatory Networks, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
- Department of Homeostatic Medicine, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Yushima Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
2
|
Weingartner M, Stücheli S, Kratschmar DV, Birk J, Klusonova P, Chapman KE, Lavery GG, Odermatt A. The ratio of ursodeoxycholyltaurine to 7-oxolithocholyltaurine serves as a biomarker of decreased 11β-hydroxysteroid dehydrogenase 1 activity in mouse. Br J Pharmacol 2021; 178:3309-3326. [PMID: 33450045 PMCID: PMC8359391 DOI: 10.1111/bph.15367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/06/2020] [Accepted: 12/27/2020] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose 11β‐Hydroxysteroid dehydrogenase 1 (11β‐HSD1) regulates tissue‐specific glucocorticoid metabolism and its impaired expression and activity are associated with major diseases. Pharmacological inhibition of 11β‐HSD1 is considered a promising therapeutic strategy. This study investigated whether alternative 7‐oxo bile acid substrates of 11β‐HSD1 or the ratios to their 7‐hydroxy products can serve as biomarkers for decreased enzymatic activity. Experimental Approach Bile acid profiles were measured by ultra‐HPLC tandem‐MS in plasma and liver tissue samples of four different mouse models with decreased 11β‐HSD1 activity: global (11KO) and liver‐specific 11β‐HSD1 knockout mice (11LKO), mice lacking hexose‐6‐phosphate dehydrogenase (H6pdKO) that provides cofactor NADPH for 11β‐HSD1 and mice treated with the pharmacological inhibitor carbenoxolone. Additionally, 11β‐HSD1 expression and activity were assessed in H6pdKO‐ and carbenoxolone‐treated mice. Key Results The enzyme product to substrate ratios were more reliable markers of 11β‐HSD1 activity than absolute levels due to large inter‐individual variations in bile acid concentrations. The ratio of the 7β‐hydroxylated ursodeoxycholyltaurine (UDC‐Tau) to 7‐oxolithocholyltaurine (7oxoLC‐Tau) was diminished in plasma and liver tissue of all four mouse models and decreased in H6pdKO‐ and carbenoxolone‐treated mice with moderately reduced 11β‐HSD1 activity. The persistence of 11β‐HSD1 oxoreduction activity in the face of H6PD loss indicates the existence of an alternative NADPH source in the endoplasmic reticulum. Conclusions and Implications The plasma UDC‐Tau/7oxo‐LC‐Tau ratio detects decreased 11β‐HSD1 oxoreduction activity in different mouse models. This ratio may be a useful biomarker of decreased 11β‐HSD1 activity in pathophysiological situations or upon pharmacological inhibition. LINKED ARTICLES This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc
Collapse
Affiliation(s)
- Michael Weingartner
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Simon Stücheli
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Denise V Kratschmar
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Julia Birk
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Petra Klusonova
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Karen E Chapman
- Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Miceli A, Cossu V, Marini C, Castellani P, Raffa S, Donegani MI, Bruno S, Ravera S, Emionite L, Orengo AM, Grillo F, Nobili F, Morbelli S, Uccelli A, Sambuceti G, Bauckneht M. 18F-Fluorodeoxyglucose Positron Emission Tomography Tracks the Heterogeneous Brain Susceptibility to the Hyperglycemia-Related Redox Stress. Int J Mol Sci 2020; 21:ijms21218154. [PMID: 33142766 PMCID: PMC7672601 DOI: 10.3390/ijms21218154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
In cognitively normal patients, mild hyperglycemia selectively decreases 18F-Fluorodeoxyglucose (FDG) uptake in the posterior brain, reproducing Alzheimer disease pattern, hampering the diagnostic accuracy of this widely used tool. This phenomenon might involve either a heterogeneous response of glucose metabolism or a different sensitivity to hyperglycemia-related redox stress. Indeed, previous studies reported a close link between FDG uptake and activation of a specific pentose phosphate pathway (PPP), triggered by hexose-6P-dehydrogenase (H6PD) and contributing to fuel NADPH-dependent antioxidant responses in the endoplasmic reticulum (ER). To clarify this issue, dynamic positron emission tomography was performed in 40 BALB/c mice four weeks after administration of saline (n = 17) or 150 mg/kg streptozotocin (n = 23, STZ). Imaging data were compared with biochemical and histological indexes of glucose metabolism and redox balance. Cortical FDG uptake was homogeneous in controls, while it was selectively decreased in the posterior brain of STZ mice. This difference was independent of the activity of enzymes regulating glycolysis and cytosolic PPP, while it was paralleled by a decreased H6PD catalytic function and enhanced indexes of oxidative damage. Thus, the relative decrease in FDG uptake of the posterior brain reflects a lower activation of ER-PPP in response to hyperglycemia-related redox stress in these areas.
Collapse
Affiliation(s)
- Alberto Miceli
- Department of Health Sciences, University of Genoa, 16132 Genova, Italy; (A.M.); (V.C.); (S.R.); (M.I.D.); (S.M.); (G.S.)
| | - Vanessa Cossu
- Department of Health Sciences, University of Genoa, 16132 Genova, Italy; (A.M.); (V.C.); (S.R.); (M.I.D.); (S.M.); (G.S.)
| | - Cecilia Marini
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (C.M.); (A.M.O.)
- CNR Institute of Molecular Bioimaging and Physiology (IBFM), 20090 Milano, Italy
| | | | - Stefano Raffa
- Department of Health Sciences, University of Genoa, 16132 Genova, Italy; (A.M.); (V.C.); (S.R.); (M.I.D.); (S.M.); (G.S.)
| | - Maria Isabella Donegani
- Department of Health Sciences, University of Genoa, 16132 Genova, Italy; (A.M.); (V.C.); (S.R.); (M.I.D.); (S.M.); (G.S.)
| | - Silvia Bruno
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova 16132, Italy; (S.B.); (S.R.)
| | - Silvia Ravera
- Department of Experimental Medicine, Human Anatomy, University of Genoa, Genova 16132, Italy; (S.B.); (S.R.)
| | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Anna Maria Orengo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (C.M.); (A.M.O.)
| | - Federica Grillo
- Department of Surgical Sciences and Integrated Diagnostics, Pathology Unit, University of Genoa, 16132 Genova, Italy;
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Center of Excellence for Biomedical Research, University of Genoa, 16132 Genoa, Italy; (F.N.); (A.U.)
- Clinical Neurology, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Morbelli
- Department of Health Sciences, University of Genoa, 16132 Genova, Italy; (A.M.); (V.C.); (S.R.); (M.I.D.); (S.M.); (G.S.)
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (C.M.); (A.M.O.)
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Center of Excellence for Biomedical Research, University of Genoa, 16132 Genoa, Italy; (F.N.); (A.U.)
- Clinical Neurology, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gianmario Sambuceti
- Department of Health Sciences, University of Genoa, 16132 Genova, Italy; (A.M.); (V.C.); (S.R.); (M.I.D.); (S.M.); (G.S.)
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (C.M.); (A.M.O.)
| | - Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (C.M.); (A.M.O.)
- Correspondence:
| |
Collapse
|