1
|
Liu Z, Xin B, Smith IN, Sency V, Szekely J, Alkelai A, Shuldiner A, Efthymiou S, Rajabi F, Coury S, Brownstein CA, Rudnik-Schöneborn S, Bruel AL, Thevenon J, Zeidler S, Jayakar P, Schmidt A, Cremer K, Engels H, Peters SO, Zaki MS, Duan R, Zhu C, Xu Y, Gao C, Sepulveda-Morales T, Maroofian R, Alkhawaja IA, Khawaja M, Alhalasah H, Houlden H, Madden JA, Turchetti V, Marafi D, Agrawal PB, Schatz U, Rotenberg A, Rotenberg J, Mancini GMS, Bakhtiari S, Kruer M, Thiffault I, Hirsch S, Hempel M, Stühn LG, Haack TB, Posey JE, Lupski JR, Lee H, Sarn NB, Eng C, Gonzaga-Jauregui C, Zhang B, Wang H. Hemizygous variants in protein phosphatase 1 regulatory subunit 3F (PPP1R3F) are associated with a neurodevelopmental disorder characterized by developmental delay, intellectual disability and autistic features. Hum Mol Genet 2023; 32:2981-2995. [PMID: 37531237 PMCID: PMC10549786 DOI: 10.1093/hmg/ddad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphatase 1 regulatory subunit 3F (PPP1R3F) is a member of the glycogen targeting subunits (GTSs), which belong to the large group of regulatory subunits of protein phosphatase 1 (PP1), a major eukaryotic serine/threonine protein phosphatase that regulates diverse cellular processes. Here, we describe the identification of hemizygous variants in PPP1R3F associated with a novel X-linked recessive neurodevelopmental disorder in 13 unrelated individuals. This disorder is characterized by developmental delay, mild intellectual disability, neurobehavioral issues such as autism spectrum disorder, seizures and other neurological findings including tone, gait and cerebellar abnormalities. PPP1R3F variants segregated with disease in affected hemizygous males that inherited the variants from their heterozygous carrier mothers. We show that PPP1R3F is predominantly expressed in brain astrocytes and localizes to the endoplasmic reticulum in cells. Glycogen content in PPP1R3F knockout astrocytoma cells appears to be more sensitive to fluxes in extracellular glucose levels than in wild-type cells, suggesting that PPP1R3F functions in maintaining steady brain glycogen levels under changing glucose conditions. We performed functional studies on nine of the identified variants and observed defects in PP1 binding, protein stability, subcellular localization and regulation of glycogen metabolism in most of them. Collectively, the genetic and molecular data indicate that deleterious variants in PPP1R3F are associated with a new X-linked disorder of glycogen metabolism, highlighting the critical role of GTSs in neurological development. This research expands our understanding of neurodevelopmental disorders and the role of PP1 in brain development and proper function.
Collapse
Affiliation(s)
- Zhigang Liu
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Baozhong Xin
- DDC Clinic for Special Needs Children, Middlefield, OH 44062, USA
| | - Iris N Smith
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Valerie Sency
- DDC Clinic for Special Needs Children, Middlefield, OH 44062, USA
| | - Julia Szekely
- DDC Clinic for Special Needs Children, Middlefield, OH 44062, USA
| | - Anna Alkelai
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Alan Shuldiner
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK
| | - Farrah Rajabi
- Division of Genetics & Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Stephanie Coury
- Division of Genetics & Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Catherine A Brownstein
- Division of Genetics & Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Ange-Line Bruel
- Inserm UMR1231 GAD, Génétique des Anomalies du Développement, Fédération Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD), CHU Dijon Bourgogne, Dijon 21000, France
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon 21000, France
| | - Julien Thevenon
- Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Parul Jayakar
- Division of Genetics and Metabolism, Nicklaus Children's Hospital, Miami, FL 33155, USA
| | - Axel Schmidt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53105 Bonn, Germany
| | - Kirsten Cremer
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53105 Bonn, Germany
| | - Hartmut Engels
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53105 Bonn, Germany
| | - Sophia O Peters
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, 53105 Bonn, Germany
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute National Research Centre, Cairo 12622, Egypt
| | - Ruizhi Duan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Changlian Zhu
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Göteborg 417 56, Sweden
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chao Gao
- Department of Pediatric Rehabilitation Medicine, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450012, China
| | - Tania Sepulveda-Morales
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76226, México
| | - Reza Maroofian
- Department of Neuromuscular Disorders, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK
| | - Issam A Alkhawaja
- Al-Bashir Hospital, Pediatric Department, Pediatric Neurology Unit, Amman, Jordan
| | - Mariam Khawaja
- Prince Hamzah Hospital, Amman, Jordan
- Hospital Clínic and Fundació Hospital Sant Joan de Déu de Martorell/Barcelona, Barcelona, Spain
| | | | - Henry Houlden
- Department of Neuromuscular Disorders, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK
| | - Jill A Madden
- Division of Genetics & Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Valentina Turchetti
- Department of Neuromuscular Disorders, University College London (UCL) Institute of Neurology, London WC1N 3BG, UK
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City 13060, Kuwait
| | - Pankaj B Agrawal
- Division of Genetics & Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
- The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA
- Division of Neonatology, Department of Pediatrics, University of Miami School of Medicine and Jackson Health System, Miami, FL 33136, USA
| | - Ulrich Schatz
- Institute for Human Genetics, Medical University Innsbruck, Innsbruck 6020, Austria
| | | | | | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam 3015 GD, The Netherlands
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine–Phoenix, Phoenix, AZ 85004, USA
| | - Michael Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine–Phoenix, Phoenix, AZ 85004, USA
| | - Isabelle Thiffault
- Genomic Medicine Center, Children’s Mercy Kansas City, Children's Mercy Research Institute, Kansas City, MO 64108, USA
| | - Steffen Hirsch
- Institute if Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Maja Hempel
- Institute if Human Genetics, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Lara G Stühn
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hyunpil Lee
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Nicholas B Sarn
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Claudia Gonzaga-Jauregui
- International Laboratory for Human Genome Research, Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76226, México
| | - Bin Zhang
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Heng Wang
- DDC Clinic for Special Needs Children, Middlefield, OH 44062, USA
| |
Collapse
|
2
|
Patil RS, Kovacs-Kasa A, Gorshkov BA, Fulton DJR, Su Y, Batori RK, Verin AD. Serine/Threonine Protein Phosphatases 1 and 2A in Lung Endothelial Barrier Regulation. Biomedicines 2023; 11:1638. [PMID: 37371733 PMCID: PMC10296329 DOI: 10.3390/biomedicines11061638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular barrier dysfunction is characterized by increased permeability and inflammation of endothelial cells (ECs), which are prominent features of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and sepsis, and a major complication of the SARS-CoV-2 infection and COVID-19. Functional impairment of the EC barrier and accompanying inflammation arises due to microbial toxins and from white blood cells of the lung as part of a defensive action against pathogens, ischemia-reperfusion or blood product transfusions, and aspiration syndromes-based injury. A loss of barrier function results in the excessive movement of fluid and macromolecules from the vasculature into the interstitium and alveolae resulting in pulmonary edema and collapse of the architecture and function of the lungs, and eventually culminates in respiratory failure. Therefore, EC barrier integrity, which is heavily dependent on cytoskeletal elements (mainly actin filaments, microtubules (MTs), cell-matrix focal adhesions, and intercellular junctions) to maintain cellular contacts, is a critical requirement for the preservation of lung function. EC cytoskeletal remodeling is regulated, at least in part, by Ser/Thr phosphorylation/dephosphorylation of key cytoskeletal proteins. While a large body of literature describes the role of phosphorylation of cytoskeletal proteins on Ser/Thr residues in the context of EC barrier regulation, the role of Ser/Thr dephosphorylation catalyzed by Ser/Thr protein phosphatases (PPases) in EC barrier regulation is less documented. Ser/Thr PPases have been proposed to act as a counter-regulatory mechanism that preserves the EC barrier and opposes EC contraction. Despite the importance of PPases, our knowledge of the catalytic and regulatory subunits involved, as well as their cellular targets, is limited and under-appreciated. Therefore, the goal of this review is to discuss the role of Ser/Thr PPases in the regulation of lung EC cytoskeleton and permeability with special emphasis on the role of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) as major mammalian Ser/Thr PPases. Importantly, we integrate the role of PPases with the structural dynamics of the cytoskeleton and signaling cascades that regulate endothelial cell permeability and inflammation.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Boris A. Gorshkov
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Wang Y, Fan M, Qian H, Ying H, Li Y, Wang L. Whole grains-derived functional ingredients against hyperglycemia: targeting hepatic glucose metabolism. Crit Rev Food Sci Nutr 2023; 64:7268-7289. [PMID: 36847153 DOI: 10.1080/10408398.2023.2183382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by the dysregulation of glucose homeostasis, resulting in hyperglycemia. However, concerns have been raised about the safety and efficacy of current hypoglycemic drugs due to undesirable side effects. Increasing studies have shown that whole grains (WG) consumption is inversely associated with the risk of T2DM and its subsequent complications. Thus, dietary strategies involving functional components from the WG provide an intriguing approach to restoring and maintaining glucose homeostasis. This review provides a comprehensive understanding of the major functional components derived from WG and their positive effects on glucose homeostasis, demonstrates the underlying molecular mechanisms targeting hepatic glucose metabolism, and discusses the unclear aspects according to the latest viewpoints and current research. Improved glycemic response and insulin resistance were observed after consumption of WG-derived bioactive ingredients, which are involved in the integrated, multi-factorial, multi-targeted regulation of hepatic glucose metabolism. Promotion of glucose uptake, glycolysis, and glycogen synthesis pathways, while inhibition of gluconeogenesis, contributes to amelioration of abnormal hepatic glucose metabolism and insulin resistance by bioactive components. Hence, the development of WG-based functional food ingredients with potent hypoglycemic properties is necessary to manage insulin resistance and T2DM.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Ying
- CAS Key laboratory of nutrition, metabolism and food safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
The ribosomal RNA processing 1B:protein phosphatase 1 holoenzyme reveals non-canonical PP1 interaction motifs. Cell Rep 2022; 41:111726. [PMID: 36450254 PMCID: PMC9813921 DOI: 10.1016/j.celrep.2022.111726] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
The serine/threonine protein phosphatase 1 (PP1) dephosphorylates hundreds of substrates by associating with >200 regulatory proteins to form specific holoenzymes. The major PP1 targeting protein in the nucleolus is RRP1B (ribosomal RNA processing 1B). In addition to selectively recruiting PP1β/PP1γ to the nucleolus, RRP1B also has a key role in ribosome biogenesis, among other functions. How RRP1B binds PP1 and regulates nucleolar phosphorylation signaling is not yet known. Here, we show that RRP1B recruits PP1 via established (RVxF/SILK/ΦΦ) and non-canonical motifs. These atypical interaction sites, the PP1β/γ specificity, and N-terminal AF-binding pockets rely on hydrophobic interactions that contribute to binding and, via phosphorylation, regulate complex formation. This work advances our understanding of PP1 isoform selectivity, reveals key roles of N-terminal PP1 residues in regulator binding, and suggests that additional PP1 interaction sites have yet to be identified, all of which are necessary for a systems biology understanding of PP1 function.
Collapse
|
5
|
Molecular architecture of the glycogen- committed PP1/PTG holoenzyme. Nat Commun 2022; 13:6199. [PMID: 36261419 PMCID: PMC9582199 DOI: 10.1038/s41467-022-33693-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
The delicate alternation between glycogen synthesis and degradation is governed by the interplay between key regulatory enzymes altering the activity of glycogen synthase and phosphorylase. Among these, the PP1 phosphatase promotes glycogenesis while inhibiting glycogenolysis. PP1 is, however, a master regulator of a variety of cellular processes, being conveniently directed to each of them by scaffolding subunits. PTG, Protein Targeting to Glycogen, addresses PP1 action to glycogen granules. In Lafora disease, the most aggressive pediatric epilepsy, genetic alterations leading to PTG accumulation cause the deposition of insoluble polyglucosans in neurons. Here, we report the crystallographic structure of the ternary complex PP1/PTG/carbohydrate. We further refine the mechanism of the PTG-mediated PP1 recruitment to glycogen by identifying i) an unusual combination of recruitment sites, ii) their contributions to the overall binding affinity, and iii) the conformational heterogeneity of this complex by in solution SAXS analyses.
Collapse
|
6
|
Bonsor DA, Alexander P, Snead K, Hartig N, Drew M, Messing S, Finci LI, Nissley DV, McCormick F, Esposito D, Rodriguez-Viciana P, Stephen AG, Simanshu DK. Structure of the SHOC2-MRAS-PP1C complex provides insights into RAF activation and Noonan syndrome. Nat Struct Mol Biol 2022; 29:966-977. [PMID: 36175670 PMCID: PMC10365013 DOI: 10.1038/s41594-022-00841-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/12/2022] [Indexed: 11/08/2022]
Abstract
SHOC2 acts as a strong synthetic lethal interactor with MEK inhibitors in multiple KRAS cancer cell lines. SHOC2 forms a heterotrimeric complex with MRAS and PP1C that is essential for regulating RAF and MAPK-pathway activation by dephosphorylating a specific phosphoserine on RAF kinases. Here we present the high-resolution crystal structure of the SHOC2-MRAS-PP1C (SMP) complex and apo-SHOC2. Our structures reveal that SHOC2, MRAS, and PP1C form a stable ternary complex in which all three proteins synergistically interact with each other. Our results show that dephosphorylation of RAF substrates by PP1C is enhanced upon interacting with SHOC2 and MRAS. The SMP complex forms only when MRAS is in an active state and is dependent on SHOC2 functioning as a scaffolding protein in the complex by bringing PP1C and MRAS together. Our results provide structural insights into the role of the SMP complex in RAF activation and how mutations found in Noonan syndrome enhance complex formation, and reveal new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Daniel A Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Patrick Alexander
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kelly Snead
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nicole Hartig
- UCL Cancer Institute, University College London, London, UK
| | - Matthew Drew
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lorenzo I Finci
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
7
|
Mathis CL, Barrios AM. Histidine phosphorylation in metalloprotein binding sites. J Inorg Biochem 2021; 225:111606. [PMID: 34555600 DOI: 10.1016/j.jinorgbio.2021.111606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
Post-translational modifications (PTMs) are invaluable regulatory tools for the control of catalytic functionality, protein-protein interactions, and signaling pathways. Historically, the study of phosphorylation as a PTM has been focused on serine, threonine, and tyrosine residues. In contrast, the significance of mammalian histidine phosphorylation remains largely unexplored. This gap in knowledge regarding the molecular basis for histidine phosphorylation as a regulatory agent exists in part because of the relative instability of phosphorylated histidine as compared with phosphorylated serine, threonine and tyrosine. However, the unique metal binding abilities of histidine make it one of the most common metal coordinating ligands in nature, and it is interesting to consider how phosphorylation would change the metal coordinating ability of histidine, and consequently, the properties of the phosphorylated metalloprotein. In this review, we examine eleven metalloproteins that have been shown to undergo reversible histidine phosphorylation at or near their metal binding sites. These proteins are described with respect to their biological activity and structure, with a particular emphasis on how phosphohistidine may tune the primary coordination sphere and protein conformation. Furthermore, several common methods, challenges, and limitations of studying sensitive, high affinity metalloproteins are discussed.
Collapse
Affiliation(s)
- Cheryl L Mathis
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, United States
| | - Amy M Barrios
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
8
|
Benjamin B, Sanchez AM, Garg A, Schwer B, Shuman S. Structure-function analysis of fission yeast cleavage and polyadenylation factor (CPF) subunit Ppn1 and its interactions with Dis2 and Swd22. PLoS Genet 2021; 17:e1009452. [PMID: 33711009 PMCID: PMC7990198 DOI: 10.1371/journal.pgen.1009452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/24/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Fission yeast Cleavage and Polyadenylation Factor (CPF), a 13-subunit complex, executes the cotranscriptional 3' processing of RNA polymerase II (Pol2) transcripts that precedes transcription termination. The three-subunit DPS sub-complex of CPF, consisting of a PP1-type phosphoprotein phosphatase Dis2, a WD-repeat protein Swd22, and a putative phosphatase regulatory factor Ppn1, associates with the CPF core to form the holo-CPF assembly. Here we probed the functional, physical, and genetic interactions of DPS by focusing on the Ppn1 subunit, which mediates association of DPS with the core. Transcriptional profiling by RNA-seq defined limited but highly concordant sets of protein-coding genes that were dysregulated in ppn1Δ, swd22Δ and dis2Δ cells, which included the DPSΔ down-regulated phosphate homeostasis genes pho1 and pho84 that are controlled by lncRNA-mediated transcriptional interference. Essential and inessential modules of the 710-aa Ppn1 protein were defined by testing the effects of Ppn1 truncations in multiple genetic backgrounds in which Ppn1 is required for growth. An N-terminal 172-aa disordered region was dispensable and its deletion alleviated hypomorphic phenotypes caused by deleting C-terminal aa 640-710. A TFIIS-like domain (aa 173-330) was not required for viability but was important for Ppn1 activity in phosphate homeostasis. Distinct sites within Ppn1 for binding to Dis2 (spanning Ppn1 aa 506 to 532) and Swd22 (from Ppn1 aa 533 to 578) were demarcated by yeast two-hybrid assays. Dis2 interaction-defective missense mutants of full-length Ppn1 (that retained Swd22 interaction) were employed to show that binding to Dis2 (or its paralog Sds21) was necessary for Ppn1 biological activity. Ppn1 function was severely compromised by missense mutations that selectively affected its binding to Swd22.
Collapse
Affiliation(s)
- Bradley Benjamin
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, United States of America
| | - Ana M. Sanchez
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, United States of America
| | - Angad Garg
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
| | - Beate Schwer
- Dept. of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, United States of America
- * E-mail: (BS); (SS)
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York, United States of America
- * E-mail: (BS); (SS)
| |
Collapse
|
9
|
Fedoryshchak RO, Přechová M, Butler AM, Lee R, O'Reilly N, Flynn HR, Snijders AP, Eder N, Ultanir S, Mouilleron S, Treisman R. Molecular basis for substrate specificity of the Phactr1/PP1 phosphatase holoenzyme. eLife 2020; 9:61509. [PMID: 32975518 PMCID: PMC7599070 DOI: 10.7554/elife.61509] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023] Open
Abstract
PPP-family phosphatases such as PP1 have little intrinsic specificity. Cofactors can target PP1 to substrates or subcellular locations, but it remains unclear how they might confer sequence-specificity on PP1. The cytoskeletal regulator Phactr1 is a neuronally enriched PP1 cofactor that is controlled by G-actin. Structural analysis showed that Phactr1 binding remodels PP1's hydrophobic groove, creating a new composite surface adjacent to the catalytic site. Using phosphoproteomics, we identified mouse fibroblast and neuronal Phactr1/PP1 substrates, which include cytoskeletal components and regulators. We determined high-resolution structures of Phactr1/PP1 bound to the dephosphorylated forms of its substrates IRSp53 and spectrin αII. Inversion of the phosphate in these holoenzyme-product complexes supports the proposed PPP-family catalytic mechanism. Substrate sequences C-terminal to the dephosphorylation site make intimate contacts with the composite Phactr1/PP1 surface, which are required for efficient dephosphorylation. Sequence specificity explains why Phactr1/PP1 exhibits orders-of-magnitude enhanced reactivity towards its substrates, compared to apo-PP1 or other PP1 holoenzymes.
Collapse
Affiliation(s)
- Roman O Fedoryshchak
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Magdalena Přechová
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Abbey M Butler
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom.,Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Rebecca Lee
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom.,Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Nicola O'Reilly
- Peptide Chemistry Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Helen R Flynn
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Ambrosius P Snijders
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Noreen Eder
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom.,Kinases and Brain Development Laboratory The Francis Crick Institute, London, United Kingdom
| | - Sila Ultanir
- Kinases and Brain Development Laboratory The Francis Crick Institute, London, United Kingdom
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Richard Treisman
- Signalling and Transcription Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
10
|
Casamayor A, Ariño J. Controlling Ser/Thr protein phosphatase PP1 activity and function through interaction with regulatory subunits. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:231-288. [PMID: 32951813 DOI: 10.1016/bs.apcsb.2020.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein phosphatase 1 is a major Ser/Thr protein phosphatase activity in eukaryotic cells. It is composed of a catalytic polypeptide (PP1C), with little substrate specificity, that interacts with a large variety of proteins of diverse structure (regulatory subunits). The diversity of holoenzymes that can be formed explain the multiplicity of cellular functions under the control of this phosphatase. In quite a few cases, regulatory subunits have an inhibitory role, downregulating the activity of the phosphatase. In this chapter we shall introduce PP1C and review the most relevant families of PP1C regulatory subunits, with particular emphasis in describing the structural basis for their interaction.
Collapse
Affiliation(s)
- Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola, del Vallès, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola, del Vallès, Spain
| |
Collapse
|