1
|
Li J, Zhang F, Wen Z, Fang C. AFP-MCDF: Multi and cross-dimensional feature fusion methods for antifreeze protein prediction. Anal Biochem 2025; 704:115881. [PMID: 40348048 DOI: 10.1016/j.ab.2025.115881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
Antifreeze proteins can effectively inhibit the formation of ice crystals and enhance cell survival in low-temperature environments. They protect the texture prolong the shelf life of food and maintain cell and tissue integrity in medical treatments, thereby improving the success rate of surgery and transplantation. Accurate prediction of Antifreeze proteins is important to advance these fields. Traditional wet-experiment methods, while providing reliable validation results, are usually time-consuming and costly. And existing computational methods still have room for improvement in predicting performance. In this study, a novel antifreeze protein prediction method, AFP-MCDF, is proposed. The AFP-MCDF method first extracts one- and two-dimensional feature representations of Antifreeze protein sequences using the pre-trained protein language models ProtBERT and ESM-2. Subsequently, these features are fused multidimensionally via BiLSTM and TextCNN to capture long-term dependencies and local features. Finally, the method predicts the frost resistance of Antifreeze protein sequences by cross-dimensional fusion and linear mapping from N to 2 dimensions. Experimental results show that AFP-MCDF performs well in the antifreeze protein prediction task, outperforming traditional computational methods and reaching the current state-of-the-art.
Collapse
Affiliation(s)
- Jinfeng Li
- Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Fan Zhang
- Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Zhenguo Wen
- Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Chun Fang
- Beijing Institute of Petrochemical Technology, Beijing, 102617, China.
| |
Collapse
|
2
|
Raymond JA. Variations on a theme: non-canonical DUF3494 ice-binding proteins. Extremophiles 2024; 29:8. [PMID: 39671019 PMCID: PMC11645318 DOI: 10.1007/s00792-024-01374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/12/2024] [Indexed: 12/14/2024]
Abstract
Among the many ice-binding proteins (IBPs) found in microorganisms (bacteria, archaea, fungi and algae), the canonical DUF3494 beta-barrel type is the most common. Until now, little variation has been found in this structure: an initial coil leads into an alpha helix that directs the following coils into a reverse stack, with the final coil ending up next to the initial coil. Here, I show that there exist many bacterial proteins whose AlphaFold-predicted structures deviate from the DUF3494 structure so that they are not recognized as belonging to an existing DUF or Pfam family. In these non-canonical DUF3494 (ncDUF3494) proteins, the number of coils in the alpha helix is highly variable, often being as high as 14. The putative ice-binding sides of each of 13 proteins modeled have a well-aligned row of hydrophilic residues, with spacings that are close to the repeat distance on the ice a-axis. A recombinant protein made for one of the proteins showed that it had ice-binding activity, even in the µg/ml range. The ncDUF3494 proteins appear to be found only in bacteria, the great majority of which live in icy habitats. C-terminal PEP-Cterm motifs, which are rare in DUF3494s, are present in most of the ncDUF3494s, possibly indicating a secretory function. The relatively narrow distribution of ncDUF3494 proteins suggests that they are a later development in DUF3494 evolution.
Collapse
Affiliation(s)
- James A Raymond
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, USA.
| |
Collapse
|
3
|
Li M, Hu X, Ni T, Ni Y, Li C, Xue D, Li F. Efficient low-temperature wastewater treatment by Pseudomonas zhanjiangensis sp. nov.: a novel cold-tolerant bacterium isolated from mangrove sediment. Front Microbiol 2024; 15:1491174. [PMID: 39545239 PMCID: PMC11560893 DOI: 10.3389/fmicb.2024.1491174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024] Open
Abstract
A novel heterotrophic, cold-tolerant bacterium, designated Pseudomonas zhanjiangensis 25A3ET, was isolated from mangrove sediment and demonstrated excellent efficiency in cold wastewater treatment. Phylogenetic analysis based on 16S rRNA gene sequences positioned strain 25A3ET within the genus Pseudomonas, showing the highest similarity (98.7%) with Pseudomonas kurunegalensis LMG 32023T. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values were below the species delineation thresholds (70% for dDDH, 95% for ANI), indicating that strain 25A3ET represents a novel species. This strain demonstrated high efficiency in removing nitrogen (N) and organic pollutants under low-temperature conditions. Specifically, it achieved 72.9% removal of chemical oxygen demand (COD), 70.6% removal of ammoniacal nitrogen (NH4 +-N), and 69.1% removal of total nitrogen (TN) after 96 h at 10°C. Genomic analysis identified key genes associated with cold adaptation, nitrogen removal and organic matter degradation. These findings indicate that Pseudomonas zhanjiangensis 25A3ET holds significant potential for application in cold temperature wastewater treatment, offering a promising solution for environmental remediation in regions with low ambient temperatures.
Collapse
Affiliation(s)
- Ming Li
- School of Integrated Chinese and Western Medicine, School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Xixi Hu
- School of Integrated Chinese and Western Medicine, School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Tiancheng Ni
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Yuan Ni
- School of Integrated Chinese and Western Medicine, School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Changran Li
- School of Integrated Chinese and Western Medicine, School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Dong Xue
- School of Integrated Chinese and Western Medicine, School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| | - Feng Li
- School of Integrated Chinese and Western Medicine, School of Life Sciences, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
4
|
Rappaport HB, Oliverio AM. Lessons from Extremophiles: Functional Adaptations and Genomic Innovations across the Eukaryotic Tree of Life. Genome Biol Evol 2024; 16:evae160. [PMID: 39101574 PMCID: PMC11299111 DOI: 10.1093/gbe/evae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 08/06/2024] Open
Abstract
From hydrothermal vents, to glaciers, to deserts, research in extreme environments has reshaped our understanding of how and where life can persist. Contained within the genomes of extremophilic organisms are the blueprints for a toolkit to tackle the multitude of challenges of survival in inhospitable environments. As new sequencing technologies have rapidly developed, so too has our understanding of the molecular and genomic mechanisms that have facilitated the success of extremophiles. Although eukaryotic extremophiles remain relatively understudied compared to bacteria and archaea, an increasing number of studies have begun to leverage 'omics tools to shed light on eukaryotic life in harsh conditions. In this perspective paper, we highlight a diverse breadth of research on extremophilic lineages across the eukaryotic tree of life, from microbes to macrobes, that are collectively reshaping our understanding of molecular innovations at life's extremes. These studies are not only advancing our understanding of evolution and biological processes but are also offering a valuable roadmap on how emerging technologies can be applied to identify cellular mechanisms of adaptation to cope with life in stressful conditions, including high and low temperatures, limited water availability, and heavy metal habitats. We shed light on patterns of molecular and organismal adaptation across the eukaryotic tree of life and discuss a few promising research directions, including investigations into the role of horizontal gene transfer in eukaryotic extremophiles and the importance of increasing phylogenetic diversity of model systems.
Collapse
Affiliation(s)
- H B Rappaport
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | | |
Collapse
|
5
|
Arai T, Yamauchi A, Yang Y, Singh SM, Sasaki YC, Tsuda S. Adsorption of ice-binding proteins onto whole ice crystal surfaces does not necessarily confer a high thermal hysteresis activity. Sci Rep 2022; 12:15443. [PMID: 36104389 PMCID: PMC9474881 DOI: 10.1038/s41598-022-19803-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Many psychrophilic microorganisms synthesize ice-binding proteins (IBPs) to survive the cold. The functions of IBPs are evaluated by the effect of the proteins on the nonequilibrium water freezing-point depression, which is called “thermal hysteresis (TH)”, and the inhibitory effect of the proteins on the growth of larger ice crystals, which is called “ice recrystallization inhibition (IRI)”. To obtain mechanical insight into the two activities, we developed a modified method of ice affinity purification and extracted two new IBP isoforms from Psychromyces glacialis, an Arctic glacier fungus. One isoform was found to be an approximately 25 kDa protein (PsgIBP_S), while the other is a 28 kDa larger protein (PsgIBP_L) that forms an intermolecular dimer. Their TH activities were less than 1 °C at millimolar concentrations, implying that both isoforms are moderately active but not hyperactive IBP species. It further appeared that both isoforms exhibit high IRI activity even at submicromolar concentrations. Furthermore, the isoforms can bind to the whole surface of a hemispherical single ice crystal, although such ice-binding was generally observed for hyperactive IBP species. These results suggest that the binding ability of IBPs to whole ice crystal surfaces is deficient for hyperactivity but is crucial for significant IRI activity.
Collapse
|
6
|
Brito Devoto T, Toscanini MA, Hermida Alava K, Etchecopaz AN, Pola SJ, Martorell MM, Ansaldo M, Negrete J, Ruberto L, Mac Cormack W, Cuestas ML. Exploring fungal diversity in Antarctic wildlife: isolation and molecular identification of culturable fungi from penguins and pinnipeds. N Z Vet J 2022; 70:263-272. [DOI: 10.1080/00480169.2022.2087784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- T Brito Devoto
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - M. A. Toscanini
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
- Universidad de Buenos Aires, CONICET, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - K Hermida Alava
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - A. N. Etchecopaz
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Cátedra de Enfermedades Infecciosas, Buenos Aires, Argentina
| | - S. J. Pola
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - M. M. Martorell
- Universidad de Buenos Aires, CONICET, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
- Instituto Antártico Argentino, Buenos Aires, Argentina
| | - M Ansaldo
- Instituto Antártico Argentino, Buenos Aires, Argentina
| | - J Negrete
- Universidad Nacional de La Plata, Facultad de Ciencias Naturales y Museo, Cátedra de Zoología III Vertebrados, Buenos Aires, Argentina
| | - L Ruberto
- Universidad de Buenos Aires, CONICET, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
- Instituto Antártico Argentino, Buenos Aires, Argentina
| | - W Mac Cormack
- Universidad de Buenos Aires, CONICET, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
- Instituto Antártico Argentino, Buenos Aires, Argentina
| | - M. L. Cuestas
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| |
Collapse
|
7
|
Box ICH, Matthews BJ, Marshall KE. Molecular evidence of intertidal habitats selecting for repeated ice-binding protein evolution in invertebrates. J Exp Biol 2022; 225:274373. [PMID: 35258616 DOI: 10.1242/jeb.243409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022]
Abstract
Ice-binding proteins (IBPs) have evolved independently in multiple taxonomic groups to improve their survival at sub-zero temperatures. Intertidal invertebrates in temperate and polar regions frequently encounter sub-zero temperatures, yet there is little information on IBPs in these organisms. We hypothesized that there are far more IBPs than are currently known and that the occurrence of freezing in the intertidal zone selects for these proteins. We compiled a list of genome-sequenced invertebrates across multiple habitats and a list of known IBP sequences and used BLAST to identify a wide array of putative IBPs in those invertebrates. We found that the probability of an invertebrate species having an IBP was significantly greater in intertidal species than in those primarily found in open ocean or freshwater habitats. These intertidal IBPs had high sequence similarity to fish and tick antifreeze glycoproteins and fish type II antifreeze proteins. Previously established classifiers based on machine learning techniques further predicted ice-binding activity in the majority of our newly identified putative IBPs. We investigated the potential evolutionary origin of one putative IBP from the hard-shelled mussel Mytilus coruscus and suggest that it arose through gene duplication and neofunctionalization. We show that IBPs likely readily evolve in response to freezing risk and that there is an array of uncharacterized IBPs, and highlight the need for broader laboratory-based surveys of the diversity of ice-binding activity across diverse taxonomic and ecological groups.
Collapse
Affiliation(s)
- Isaiah C H Box
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, CanadaV6T 1Z4
| | - Benjamin J Matthews
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, CanadaV6T 1Z4
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, 6270 University Blvd, Vancouver, BC, CanadaV6T 1Z4
| |
Collapse
|
8
|
Kuramochi M, Dong Y, Yang Y, Arai T, Okada R, Shinkai Y, Doi M, Aoyama K, Sekiguchi H, Mio K, Tsuda S, Sasaki YC. Dynamic motions of ice-binding proteins in living Caenorhabditis elegans using diffracted X-ray blinking and tracking. Biochem Biophys Rep 2022; 29:101224. [PMID: 35146137 PMCID: PMC8819013 DOI: 10.1016/j.bbrep.2022.101224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Masahiro Kuramochi
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, 316-8511, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
- Corresponding author. Graduate School of Science and Engineering, Ibaraki University, Hitachi, 316-8511, Japan.
| | - Yige Dong
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Yue Yang
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Tatsuya Arai
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Rio Okada
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Yoichi Shinkai
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan
| | - Kouki Aoyama
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Hiroshi Sekiguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Kazuhiro Mio
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
| | - Sakae Tsuda
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
| | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
- Corresponding author. Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan.
| |
Collapse
|
9
|
Ghalamara S, Silva S, Brazinha C, Pintado M. Structural diversity of marine anti-freezing proteins, properties and potential applications: a review. BIORESOUR BIOPROCESS 2022; 9:5. [PMID: 38647561 PMCID: PMC10992025 DOI: 10.1186/s40643-022-00494-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/08/2022] [Indexed: 11/10/2022] Open
Abstract
Cold-adapted organisms, such as fishes, insects, plants and bacteria produce a group of proteins known as antifreeze proteins (AFPs). The specific functions of AFPs, including thermal hysteresis (TH), ice recrystallization inhibition (IRI), dynamic ice shaping (DIS) and interaction with membranes, attracted significant interest for their incorporation into commercial products. AFPs represent their effects by lowering the water freezing point as well as preventing the growth of ice crystals and recrystallization during frozen storage. The potential of AFPs to modify ice growth results in ice crystal stabilizing over a defined temperature range and inhibiting ice recrystallization, which could minimize drip loss during thawing, improve the quality and increase the shelf-life of frozen products. Most cryopreservation studies using marine-derived AFPs have shown that the addition of AFPs can increase post-thaw viability. Nevertheless, the reduced availability of bulk proteins and the need of biotechnological techniques for industrial production, limit the possible usage in foods. Despite all these drawbacks, relatively small concentrations are enough to show activity, which suggests AFPs as potential food additives in the future. The present work aims to review the results of numerous investigations on marine-derived AFPs and discuss their structure, function, physicochemical properties, purification and potential applications.
Collapse
Affiliation(s)
- Soudabeh Ghalamara
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Sara Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Carla Brazinha
- LAQV/Requimte, Faculdade de Ciências E Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | - Manuela Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
10
|
Shen L, Zhang S, Chen G. Regulated strategies of cold-adapted microorganisms in response to cold: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68006-68024. [PMID: 34648167 DOI: 10.1007/s11356-021-16843-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There are a large number of active cold-adapted microorganisms in the perennial cold environment. Due to their high-efficiency and energy-saving catalytic properties, cold-adapted microorganisms have become valuable natural resources with potential in various biological fields. In this study, a series of cold response strategies for microorganisms were summarized. This mainly involves the regulation of cell membrane fluidity, synthesis of cold adaptation proteins, regulators and metabolic changes, energy supply, and reactive oxygen species. Also, the potential of biocatalysts produced by cold-adapted microorganisms including cold-active enzymes, ice-binding proteins, polyhydroxyalkanoates, and surfactants was introduced, which provided a guidance for expanding its application values. Overall, new insights were obtained on response strategies of microorganisms to cold environments in this review. This will deepen the understanding of the cold tolerance mechanism of cold-adapted microorganisms, thus promoting the establishment and application of low-temperature biotechnology.
Collapse
Affiliation(s)
- Lijun Shen
- College of Life Sciences, Jilin Agricultural University, Changchun, China
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Changchun, China
| | - Sitong Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun, China.
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Changchun, China.
| | - Guang Chen
- College of Life Sciences, Jilin Agricultural University, Changchun, China.
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, Changchun, China.
| |
Collapse
|
11
|
Yusof NA, Hashim NHF, Bharudin I. Cold Adaptation Strategies and the Potential of Psychrophilic Enzymes from the Antarctic Yeast, Glaciozyma antarctica PI12. J Fungi (Basel) 2021; 7:jof7070528. [PMID: 34209103 PMCID: PMC8306469 DOI: 10.3390/jof7070528] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022] Open
Abstract
Psychrophilic organisms possess several adaptive strategies which allow them to sustain life at low temperatures between −20 to 20 °C. Studies on Antarctic psychrophiles are interesting due to the multiple stressors that exist on the permanently cold continent. These organisms produce, among other peculiarities, cold-active enzymes which not only have tremendous biotechnological potential but are valuable models for fundamental research into protein structure and function. Recent innovations in omics technologies such as genomics, transcriptomics, proteomics and metabolomics have contributed a remarkable perspective of the molecular basis underpinning the mechanisms of cold adaptation. This review critically discusses similar and different strategies of cold adaptation in the obligate psychrophilic yeast, Glaciozyma antarctica PI12 at the molecular (genome structure, proteins and enzymes, gene expression) and physiological (antifreeze proteins, membrane fluidity, stress-related proteins) levels. Our extensive studies on G. antarctica have revealed significant insights towards the innate capacity of- and the adaptation strategies employed by this psychrophilic yeast for life in the persistent cold. Furthermore, several cold-active enzymes and proteins with biotechnological potential are also discussed.
Collapse
Affiliation(s)
- Nur Athirah Yusof
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Noor Haza Fazlin Hashim
- Water Quality Laboratory, National Water Research Institute Malaysia (NAHRIM), Ministry of Environment and Water, Jalan Putra Permai, Seri Kembangan 43300, Selangor, Malaysia;
| | - Izwan Bharudin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
12
|
Khan NMMU, Arai T, Tsuda S, Kondo H. Characterization of microbial antifreeze protein with intermediate activity suggests that a bound-water network is essential for hyperactivity. Sci Rep 2021; 11:5971. [PMID: 33727595 PMCID: PMC7966756 DOI: 10.1038/s41598-021-85559-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
Antifreeze proteins (AFPs) inhibit ice growth by adsorbing onto specific ice planes. Microbial AFPs show diverse antifreeze activity and ice plane specificity, while sharing a common molecular scaffold. To probe the molecular mechanisms responsible for AFP activity, we here characterized the antifreeze activity and crystal structure of TisAFP7 from the snow mold fungus Typhula ishikariensis. TisAFP7 exhibited intermediate activity, with the ability to bind the basal plane, compared with a hyperactive isoform TisAFP8 and a moderately active isoform TisAFP6. Analysis of the TisAFP7 crystal structure revealed a bound-water network arranged in a zigzag pattern on the surface of the protein's ice-binding site (IBS). While the three AFP isoforms shared the water network pattern, the network on TisAFP7 IBS was not extensive, which was likely related to its intermediate activity. Analysis of the TisAFP7 crystal structure also revealed the presence of additional water molecules that form a ring-like network surrounding the hydrophobic side chain of a crucial IBS phenylalanine, which might be responsible for the increased adsorption of AFP molecule onto the basal plane. Based on these observations, we propose that the extended water network and hydrophobic hydration at IBS together determine the TisAFP activity.
Collapse
Affiliation(s)
- N M-Mofiz Uddin Khan
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Department of Chemistry, Dhaka University of Engineering and Technology, Gazipur Gazipur, 1700, Bangladesh
| | - Tatsuya Arai
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Sakae Tsuda
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido, 062-8517, Japan.,OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8563, Japan
| | - Hidemasa Kondo
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan. .,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-Higashi, Toyohira, Sapporo, Hokkaido, 062-8517, Japan.
| |
Collapse
|
13
|
Peng Z, Liu G, Huang K. Cold Adaptation Mechanisms of a Snow Alga Chlamydomonas nivalis During Temperature Fluctuations. Front Microbiol 2021; 11:611080. [PMID: 33584575 PMCID: PMC7874021 DOI: 10.3389/fmicb.2020.611080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Cold environments, such as glaciers and alpine regions, constitute unique habitats for organisms living on Earth. In these harsh ecosystems, snow algae survive, florish, and even become primary producers for microbial communities. How the snow algae maintain physiological activity during violent ambient temperature changes remains unsolved. To explore the cold adaptation mechanisms of the unicellular snow alga Chlamydomonas nivalis, we compared its physiological responses to a model organism from the same genus, Chlamydomonas reinhardtii. When both cell types were exposed to a shift from 22°C to 4°C, C. nivalis exhibited an apparent advantage in cold tolerance over C. reinhardtii, as C. nivalis had both a higher growth rate and photosynthetic efficiency. To determine the cold tolerance mechanisms of C. nivalis, RNA sequencing was used to compare transcriptomes of both species after 1 h of cold treatment, mimicking temperature fluctuations in the polar region. Differential expression analysis showed that C. nivalis had fewer transcriptomic changes and was more stable during rapid temperature decrease relative to C. reinhardtii, especially for the expression of photosynthesis related genes. Additionally, we found that transcription in C. nivalis was precisely regulated by the cold response network, consisting of at least 12 transcription factors and 3 RNA-binding proteins. Moreover, genes participating in nitrogen metabolism, the pentose phosphate pathway, and polysaccharide biosynthesis were upregulated, indicating that increasing resource assimilation and remodeling of metabolisms were critical for cold adaptation in C. nivalis. Furthermore, we identified horizontally transferred genes differentially expressed in C. nivalis, which are critical for cold adaptation in other psychrophiles. Our results reveal that C. nivalis adapts rapid temperature decrease by efficiently regulating transcription of specific genes to optimize resource assimilation and metabolic pathways, providing critical insights into how snow algae survive and propagate in cold environments.
Collapse
Affiliation(s)
- Zhao Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Gai Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
14
|
Ice-Binding Proteins Associated with an Antarctic Cyanobacterium, Nostoc sp. HG1. Appl Environ Microbiol 2021; 87:AEM.02499-20. [PMID: 33158891 PMCID: PMC7783341 DOI: 10.1128/aem.02499-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Ice-binding proteins (IBPs) have been identified in numerous polar algae and bacteria, but so far not in any cyanobacteria, despite the abundance of cyanobacteria in polar regions. We previously reported strong IBP activity associated with an Antarctic Nostoc species. In this study, to identify the proteins responsible, as well as elucidate their origin, we sequenced the DNA of an environmental sample of this species, designated Nostoc sp. HG1, and its bacterial community and attempted to identify IBPs by looking for known IBPs in the metagenome and by looking for novel IBPs by tandem mass spectrometry (MS/MS) proteomics analyses of ice affinity-purified proteins. The metagenome contained over 116 DUF3494-type IBP genes, the most common type of IBP identified so far. One of the IBPs could be confidently assigned to Nostoc, while the others could be attributed to diverse bacteria, which, surprisingly, accounted for the great majority of the metagenome. Recombinant Nostoc IBPs (nIBPs) had strong ice-structuring activities, and their circular dichroism spectra were consistent with the secondary structure of a DUF3494-type IBP. nIBP is unusual in that it is the only IBP identified so far to have a PEP (amino acid motif) C-terminal signal, a signal that has been associated with anchoring to the outer cell membrane. These results suggest that the observed IBP activity of Nostoc sp. HG1 was due to a combination of endogenous and exogenous IBPs. Amino acid and nucleotide sequence analyses of nIBP raise the possibility that it was acquired from a planctomycete.IMPORTANCE The horizontal transfer of genes encoding ice-binding proteins (IBPs), proteins that confer freeze-thaw tolerance, has allowed many microorganisms to expand their ranges into polar regions. One group of microorganisms for which nothing is known about its IBPs is cyanobacteria. In this study, we identified a cyanobacterial IBP and showed that it was likely acquired from another bacterium, probably a planctomycete. We also showed that a consortium of IBP-producing bacteria living with the Nostoc contribute to its IBP activity.
Collapse
|
15
|
Lauritano C, Roncalli V, Ambrosino L, Cieslak MC, Ianora A. First De Novo Transcriptome of the Copepod Rhincalanus gigas from Antarctic Waters. BIOLOGY 2020; 9:biology9110410. [PMID: 33266516 PMCID: PMC7700397 DOI: 10.3390/biology9110410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/23/2023]
Abstract
Simple Summary Compared to more accessible sites, organisms inhabiting Antarctic waters have been poorly investigated. This study provides the first molecular resource (transcriptome from whole individual) for the eucalanoid copepod Rhincalanus gigas, one of the predominant zooplankton species of Antarctic waters. Sequence analyses identified possible adaptation strategies adopted by the organism to cope with cold environments. Among those, we identified in R. gigas transcriptome three predicted genes encoding for antifreeze proteins and gene duplication within the glutathione metabolism pathway. This new molecular resource, provided here, will be useful to study the physiology, ecology, and biology of R. gigas and it increases the information available for polar environments. Abstract Antarctic waters are the largest almost untapped diversified resource of our planet. Molecular resources for Antarctic organisms are very limited and mostly represented by sequences used for species genotyping. In this study, we present the first transcriptome for the copepod Rhincalanus gigas, one of the predominant zooplankton species of Antarctic waters. This transcriptome represents also the first molecular resource for an eucalanoid copepod. The transcriptome is of high quality and completeness. The presence of three predicted genes encoding antifreeze proteins and gene duplication within the glutathione metabolism pathway are suggested as possible adaptations to cope with this harsh environment. The R. gigas transcriptome represents a powerful new resource for investigating the molecular basis associated with polar biological processes and ecology.
Collapse
Affiliation(s)
- Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
- Correspondence: ; Tel.: +39-081-5833-221
| | - Vittoria Roncalli
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Luca Ambrosino
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Matthew C. Cieslak
- Pacific Biosciences Research Center, University of Hawai’i at Manoa, 1993 East-West Rd., Honolulu, HI 96822, USA;
| | - Adrianna Ianora
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| |
Collapse
|
16
|
Batista TM, Hilario HO, de Brito GAM, Moreira RG, Furtado C, de Menezes GCA, Rosa CA, Rosa LH, Franco GR. Whole-genome sequencing of the endemic Antarctic fungus Antarctomyces pellizariae reveals an ice-binding protein, a scarce set of secondary metabolites gene clusters and provides insights on Thelebolales phylogeny. Genomics 2020; 112:2915-2921. [DOI: 10.1016/j.ygeno.2020.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
|
17
|
Zhang Y, Li C, Geary T, Simpson BK. Contribution of Special Structural Features to High Thermal Stability of a Cold-Active Transglutaminase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7935-7945. [PMID: 32643372 DOI: 10.1021/acs.jafc.0c03344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A cold-active transglutaminase (TGase, EC 2.3.2.13) that catalyzes the reaction of protein glutamine + protein lysine ↔ protein with γ-glutamyl-ε-lysine cross-link + NH3 at low temperatures was reported previously. This study verified the thermal stability of the TGase from 0-80 °C. Fluorescence and CD spectra studies confirmed tertiary structural damage at 40 °C, α-helix reduction at 60 °C, and refolding during cooling to 20 °C. The TGase sequence was obtained by transcriptomics and used to build its structure. Its catalytic triad was Cys333-His403-Asp426 and its catalytic process was inferred from the model. Molecular dynamics simulation illustrated that its cold activity resulted from its flexible active site, while high thermostability was conferred by an overall rigid structure, a large amount of stable Val and Lys, and strong electrostatic interactions at the N- and C- terminals. This study fills gaps in the correlation of conformational changes with stability and activity of TGase.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Food Science & Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Chen Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Timothy Geary
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Benjamin Kofi Simpson
- Department of Food Science & Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| |
Collapse
|
18
|
Vallesi A, Pucciarelli S, Buonanno F, Fontana A, Mangiagalli M. Bioactive molecules from protists: Perspectives in biotechnology. Eur J Protistol 2020; 75:125720. [PMID: 32569992 DOI: 10.1016/j.ejop.2020.125720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
For hundreds of years, mankind has benefited from the natural metabolic processes of microorganisms to obtain basic products such as fermented foods and alcoholic beverages. More recently, microorganisms have been exploited for the production of antibiotics, vitamins and enzymes to be used in medicine and chemical industries. Additionally, several modern drugs, including those for cancer therapy, are natural products or their derivatives. Protists are a still underexplored source of natural products potentially of interest for biotechnological and biomedical applications. This paper focuses on some examples of bioactive molecules from protists and associated bacteria and their possible use in biotechnology.
Collapse
Affiliation(s)
- Adriana Vallesi
- School of Biosciences and Veterinary Medicine, Università degli Studi di Camerino, Camerino (MC), Italy.
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, Università degli Studi di Camerino, Camerino (MC), Italy.
| | - Federico Buonanno
- Laboratory of Protistology and Biology Education, Department of E.C.H.T. Università degli Studi di Macerata, Macerata, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Pozzuoli, Napoli, Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
19
|
Stephens TG, González-Pech RA, Cheng Y, Mohamed AR, Burt DW, Bhattacharya D, Ragan MA, Chan CX. Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions. BMC Biol 2020; 18:56. [PMID: 32448240 PMCID: PMC7245778 DOI: 10.1186/s12915-020-00782-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Dinoflagellates are taxonomically diverse and ecologically important phytoplankton that are ubiquitously present in marine and freshwater environments. Mostly photosynthetic, dinoflagellates provide the basis of aquatic primary production; most taxa are free-living, while some can form symbiotic and parasitic associations with other organisms. However, knowledge of the molecular mechanisms that underpin the adaptation of these organisms to diverse ecological niches is limited by the scarce availability of genomic data, partly due to their large genome sizes estimated up to 250 Gbp. Currently available dinoflagellate genome data are restricted to Symbiodiniaceae (particularly symbionts of reef-building corals) and parasitic lineages, from taxa that have smaller genome size ranges, while genomic information from more diverse free-living species is still lacking. RESULTS Here, we present two draft diploid genome assemblies of the free-living dinoflagellate Polarella glacialis, isolated from the Arctic and Antarctica. We found that about 68% of the genomes are composed of repetitive sequence, with long terminal repeats likely contributing to intra-species structural divergence and distinct genome sizes (3.0 and 2.7 Gbp). For each genome, guided using full-length transcriptome data, we predicted > 50,000 high-quality protein-coding genes, of which ~40% are in unidirectional gene clusters and ~25% comprise single exons. Multi-genome comparison unveiled genes specific to P. glacialis and a common, putatively bacterial origin of ice-binding domains in cold-adapted dinoflagellates. CONCLUSIONS Our results elucidate how selection acts within the context of a complex genome structure to facilitate local adaptation. Because most dinoflagellate genes are constitutively expressed, Polarella glacialis has enhanced transcriptional responses via unidirectional, tandem duplication of single-exon genes that encode functions critical to survival in cold, low-light polar environments. These genomes provide a foundational reference for future research on dinoflagellate evolution.
Collapse
Affiliation(s)
- Timothy G Stephens
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Present Address: Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Raúl A González-Pech
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,Present address: Department of Integrative Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Yuanyuan Cheng
- UQ Genomics Initiative, The University of Queensland, Brisbane, QLD, 4072, Australia.,Present Address: Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Amin R Mohamed
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Queensland Bioscience Precinct, Brisbane, QLD, 4067, Australia
| | - David W Burt
- UQ Genomics, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Mark A Ragan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Cheong Xin Chan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia. .,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
20
|
An Ice-Binding Protein from an Antarctic Ascomycete Is Fine-Tuned to Bind to Specific Water Molecules Located in the Ice Prism Planes. Biomolecules 2020; 10:biom10050759. [PMID: 32414092 PMCID: PMC7277481 DOI: 10.3390/biom10050759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 01/29/2023] Open
Abstract
Many microbes that survive in cold environments are known to secrete ice-binding proteins (IBPs). The structure–function relationship of these proteins remains unclear. A microbial IBP denoted AnpIBP was recently isolated from a cold-adapted fungus, Antarctomyces psychrotrophicus. The present study identified an orbital illumination (prism ring) on a globular single ice crystal when soaked in a solution of fluorescent AnpIBP, suggesting that AnpIBP binds to specific water molecules located in the ice prism planes. In order to examine this unique ice-binding mechanism, we carried out X-ray structural analysis and mutational experiments. It appeared that AnpIBP is made of 6-ladder β-helices with a triangular cross section that accompanies an “ice-like” water network on the ice-binding site. The network, however, does not exist in a defective mutant. AnpIBP has a row of four unique hollows on the IBS, where the distance between the hollows (14.7 Å) is complementary to the oxygen atom spacing of the prism ring. These results suggest the structure of AnpIBP is fine-tuned to merge with the ice–water interface of an ice crystal through its polygonal water network and is then bound to a specific set of water molecules constructing the prism ring to effectively halt the growth of ice.
Collapse
|
21
|
Usman M, Khan S, Lee JA. AFP-LSE: Antifreeze Proteins Prediction Using Latent Space Encoding of Composition of k-Spaced Amino Acid Pairs. Sci Rep 2020; 10:7197. [PMID: 32345989 PMCID: PMC7188683 DOI: 10.1038/s41598-020-63259-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Species living in extremely cold environments resist the freezing conditions through antifreeze proteins (AFPs). Apart from being essential proteins for various organisms living in sub-zero temperatures, AFPs have numerous applications in different industries. They possess very small resemblance to each other and cannot be easily identified using simple search algorithms such as BLAST and PSI-BLAST. Diverse AFPs found in fishes (Type I, II, III, IV and antifreeze glycoproteins (AFGPs)), are sub-types and show low sequence and structural similarity, making their accurate prediction challenging. Although several machine-learning methods have been proposed for the classification of AFPs, prediction methods that have greater reliability are required. In this paper, we propose a novel machine-learning-based approach for the prediction of AFP sequences using latent space learning through a deep auto-encoder method. For latent space pruning, we use the output of the auto-encoder with a deep neural network classifier to learn the non-linear mapping of the protein sequence descriptor and class label. The proposed method outperformed the existing methods, yielding excellent results in comparison. A comprehensive ablation study is performed, and the proposed method is evaluated in terms of widely used performance measures. In particular, the proposed method demonstrated a high Matthews correlation coefficient of 0.52, F-score of 0.49, and Youden’s index of 0.81 on an independent test dataset, thereby outperforming the existing methods for AFP prediction.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Computer Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Shujaat Khan
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jeong-A Lee
- Department of Computer Engineering, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
22
|
Dhakar K, Pandey A. Microbial Ecology from the Himalayan Cryosphere Perspective. Microorganisms 2020; 8:microorganisms8020257. [PMID: 32075196 PMCID: PMC7074745 DOI: 10.3390/microorganisms8020257] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/18/2022] Open
Abstract
Cold-adapted microorganisms represent a large fraction of biomass on Earth because of the dominance of low-temperature environments. Extreme cold environments are mainly dependent on microbial activities because this climate restricts higher plants and animals. Himalaya is one of the most important cold environments on Earth as it shares climatic similarities with the polar regions. It includes a wide range of ecosystems, from temperate to extreme cold, distributed along the higher altitudes. These regions are characterized as stressful environments because of the heavy exposure to harmful rays, scarcity of nutrition, and freezing conditions. The microorganisms that colonize these regions are recognized as cold-tolerant (psychrotolerants) or/and cold-loving (psychrophiles) microorganisms. These microorganisms possess several structural and functional adaptations in order to perform normal life processes under the stressful low-temperature environments. Their biological activities maintain the nutrient flux in the environment and contribute to the global biogeochemical cycles. Limited culture-dependent and culture-independent studies have revealed their diversity in community structure and functional potential. Apart from the ecological importance, these microorganisms have been recognized as source of cold-active enzymes and novel bioactive compounds of industrial and biotechnological importance. Being an important part of the cryosphere, Himalaya needs to be explored at different dimensions related to the life of the inhabiting extremophiles. The present review discusses the distinct facts associated with microbial ecology from the Himalayan cryosphere perspective.
Collapse
Affiliation(s)
- Kusum Dhakar
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel;
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Bell Road, Clement Town, Dehradun 248002, India
- Correspondence:
| |
Collapse
|
23
|
Raymond JA, Remias D. Ice-Binding Proteins in a Chrysophycean Snow Alga: Acquisition of an Essential Gene by Horizontal Gene Transfer. Front Microbiol 2019; 10:2697. [PMID: 31849866 PMCID: PMC6892780 DOI: 10.3389/fmicb.2019.02697] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/06/2019] [Indexed: 01/08/2023] Open
Abstract
All ice-associated algae examined so far have genes for ice-binding proteins (IBPs), which suggest that these proteins are essential for survival in icy habitats. The most common type of IBP, type 1 IBPs (also referred to as DUF3494 IBPs), is also found in ice-associated bacteria and fungi. Previous studies have suggested that algal IBP genes were acquired by horizontal transfer from other microorganisms (probably bacteria). However, it remains unclear whether this is also the case for algae distantly related to the ones examined so far and whether microorganisms other than bacteria could be the donors. Furthermore, there is only limited evidence that these proteins are expressed at low temperature. Here, we show that Kremastochrysopsis austriaca (Chrysophyceae), an Austrian snow alga that is not closely related to any of the ice-associated algae examined so far, also produces IBPs, although their activity was weak. Sequencing the algal genome and the transcriptomes of cells grown at 1 and 15°C revealed three isoforms of a type 1 IBP. In agreement with their putative function, the three isoforms were strongly upregulated by one to two orders of magnitude at 1°C compared to 15°C. In a phylogenetic tree, the K. austriaca IBPs were distant from other algal IBPs, with the closest matches being bacterial proteins. These results suggest that the K. austriaca IBPs were derived from a gene that was acquired from a bacterium unrelated to other IBP donor bacteria and confirm by their presence in yet another alga the essential role of algal IBPs.
Collapse
Affiliation(s)
- James A Raymond
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, Wels, Austria
| |
Collapse
|
24
|
Kuramochi M, Takanashi C, Yamauchi A, Doi M, Mio K, Tsuda S, Sasaki YC. Expression of Ice-Binding Proteins in Caenorhabditis elegans Improves the Survival Rate upon Cold Shock and during Freezing. Sci Rep 2019; 9:6246. [PMID: 31092839 PMCID: PMC6520345 DOI: 10.1038/s41598-019-42650-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/04/2019] [Indexed: 01/01/2023] Open
Abstract
Ice-binding proteins (IBPs) are capable of binding ice crystals and inhibiting their growth at freezing temperatures. IBPs are also thought to stabilize the cell membrane at non-freezing temperatures near 0 °C. These two effects have been assumed to reduce cold- and freezing-induced damage to cells and tissues. However, knowledge regarding the effects of IBP on the living animals is limited. Here, we characterized the relationship between the IBP effects and the physiological role by using the nematode Caenorhabditis elegans. The expression of fish (NfeIBPs)- and fungus-derived IBPs (AnpIBPs and TisIBP8) in C. elegans improved its survival rate during exposure to 0 and −2 °C (cold shock) and −5 °C (freezing). The observed cold tolerance of C. elegans after cold shock is attributable to the stabilization of cell-membrane lipids with IBPs, and the freezing tolerance at −5 °C can be attributed to the inhibition of ice-crystal growth by the IBPs. Significantly, the survival rate of C. elegans at −5 °C was improved by expression of wild-type AnpIBP and maximized by that of TisIBP8, whereas it was lowered when a defective AnpIBP mutant was expressed. These results suggest that the ice-binding ability of IBP has a good correlation with the survival rate of C. elegans during freezing.
Collapse
Affiliation(s)
- Masahiro Kuramochi
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan. .,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan. .,Molecular Neurobiology Research Group and DAI-LAB, Biomedical Research Institute, National Institute of Advance Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan.
| | - Chiaki Takanashi
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
| | - Akari Yamauchi
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan
| | - Motomichi Doi
- Molecular Neurobiology Research Group and DAI-LAB, Biomedical Research Institute, National Institute of Advance Industrial Science and Technology (AIST), Tsukuba, 305-8566, Japan
| | - Kazuhiro Mio
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan
| | - Sakae Tsuda
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan. .,Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan. .,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, 062-8517, Japan.
| | - Yuji C Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan. .,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, 277-8565, Japan.
| |
Collapse
|
25
|
Vance TDR, Bayer-Giraldi M, Davies PL, Mangiagalli M. Ice-binding proteins and the 'domain of unknown function' 3494 family. FEBS J 2019; 286:855-873. [PMID: 30680879 DOI: 10.1111/febs.14764] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 01/22/2019] [Indexed: 02/03/2023]
Abstract
Ice-binding proteins (IBPs) control the growth and shape of ice crystals to cope with subzero temperatures in psychrophilic and freeze-tolerant organisms. Recently, numerous proteins containing the domain of unknown function (DUF) 3494 were found to bind ice crystals and, hence, are classified as IBPs. DUF3494 IBPs constitute today the most widespread of the known IBP families. They can be found in different organisms including bacteria, yeasts and microalgae, supporting the hypothesis of horizontal transfer of its gene. Although the 3D structure is always a discontinuous β-solenoid with a triangular cross-section and an adjacent alpha-helix, DUF3494 IBPs present very diverse activities in terms of the magnitude of their thermal hysteresis and inhibition of ice recrystallization. The proteins are secreted into the environments around the host cells or are anchored on their cell membranes. This review covers several aspects of this new class of IBPs, which promise to leave their mark on several research fields including structural biology, protein biochemistry and cryobiology.
Collapse
Affiliation(s)
- Tyler D R Vance
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Maddalena Bayer-Giraldi
- Department of Glaciology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Italy
| |
Collapse
|