1
|
Lloyd MD, Gregory KS, Acharya KR. Functional implications of unusual NOS and SONOS covalent linkages found in proteins. Chem Commun (Camb) 2024; 60:9463-9471. [PMID: 39109843 DOI: 10.1039/d4cc03191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The tertiary and quaternary structures of many proteins are stabilized by strong covalent forces, of which disulfide bonds are the most well known. A new type of intramolecular and intermolecular covalent bond has been recently reported, consisting of the Lys and Cys side-chains linked by an oxygen atom (NOS). These post-translational modifications are widely distributed amongst proteins, and are formed under oxidative conditions. Similar linkages are observed during antibiotic biosynthesis, where hydroxylamine intermediates are tethered to the sulfur of enzyme active site Cys residues. These linkages open the way to understanding protein structure and function, give new insights into enzyme catalysis and natural product biosynthesis, and offer new strategies for drug design.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Kyle S Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - K Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
2
|
Gasiulė L, Stankevičius V, Kvederavičiu Tė K, Rimšelis JM, Klimkevičius V, Petraitytė G, Rukšėnaitė A, Masevičius V, Klimašauskas S. Engineered Methionine Adenosyltransferase Cascades for Metabolic Labeling of Individual DNA Methylomes in Live Cells. J Am Chem Soc 2024; 146:18722-18729. [PMID: 38943667 PMCID: PMC11240257 DOI: 10.1021/jacs.4c06529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Methylation, a widely occurring natural modification serving diverse regulatory and structural functions, is carried out by a myriad of S-adenosyl-l-methionine (AdoMet)-dependent methyltransferases (MTases). The AdoMet cofactor is produced from l-methionine (Met) and ATP by a family of multimeric methionine adenosyltransferases (MAT). To advance mechanistic and functional studies, strategies for repurposing the MAT and MTase reactions to accept extended versions of the transferable group from the corresponding precursors have been exploited. Here, we used structure-guided engineering of mouse MAT2A to enable biocatalytic production of an extended AdoMet analogue, Ado-6-azide, from a synthetic methionine analogue, S-(6-azidohex-2-ynyl)-l-homocysteine (N3-Met). Three engineered MAT2A variants showed catalytic proficiency with the extended analogues and supported DNA derivatization in cascade reactions with M.TaqI and an engineered variant of mouse DNMT1 both in the absence and presence of competing Met. We then installed two of the engineered variants as MAT2A-DNMT1 cascades in mouse embryonic stem cells by using CRISPR-Cas genome editing. The resulting cell lines maintained normal viability and DNA methylation levels and showed Dnmt1-dependent DNA modification with extended azide tags upon exposure to N3-Met in the presence of physiological levels of Met. This for the first time demonstrates a genetically stable system for biosynthetic production of an extended AdoMet analogue, which enables mild metabolic labeling of a DNMT-specific methylome in live mammalian cells.
Collapse
Affiliation(s)
- Liepa Gasiulė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Vaidotas Stankevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Kotryna Kvederavičiu Tė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Jonas Mindaugas Rimšelis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Vaidas Klimkevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Gražina Petraitytė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Audronė Rukšėnaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Viktoras Masevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
3
|
Li C, Gui G, Zhang L, Qin A, Zhou C, Zha X. Overview of Methionine Adenosyltransferase 2A (MAT2A) as an Anticancer Target: Structure, Function, and Inhibitors. J Med Chem 2022; 65:9531-9547. [PMID: 35796517 DOI: 10.1021/acs.jmedchem.2c00395] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methionine adenosyltransferase 2A (MAT2A) is a rate-limiting enzyme in the methionine cycle that primarily catalyzes the synthesis of S-adenosylmethionine (SAM) from methionine and adenosine triphosphate (ATP). MAT2A has been recognized as a therapeutic target for the treatment of cancers. Recently, a few MAT2A inhibitors have been reported, and three entered clinical trials to treat solid tumorsor lymphoma with MTAP loss. This review aims to summarize the current understanding of the roles of MAT2A in cancer and the discovery of MAT2A inhibitors. Furthermore, a perspective on the use of MAT2A inhibitors for the treatment of cancer is also discussed. We hope to provide guidance for future drug design and optimization via analysis of the binding modes of known MAT2A inhibitors.
Collapse
Affiliation(s)
- Chunzheng Li
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li Zhang
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Anqi Qin
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
4
|
Ornoy A, Weinstein-Fudim L, Becker M. SAMe, Choline, and Valproic Acid as Possible Epigenetic Drugs: Their Effects in Pregnancy with a Special Emphasis on Animal Studies. Pharmaceuticals (Basel) 2022; 15:192. [PMID: 35215304 PMCID: PMC8879727 DOI: 10.3390/ph15020192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
In this review, we discuss the functions and main effects on pregnancy outcomes of three agents that have the ability to induce epigenetic modifications: valproic acid (VPA), a well-known teratogen that is a histone deacetylase inhibitor; S-adenosylmethionine (SAMe), the most effective methyl donor; and choline, an important micronutrient involved in the one methyl group cycle and in the synthesis of SAMe. Our aim was to describe the possible effects of these compounds when administered during pregnancy on the developing embryo and fetus or, if administered postnatally, their effects on the developing child. These substances are able to modify gene expression and possibly alleviate neurobehavioral changes in disturbances that have epigenetic origins, such as autism spectrum disorder (ASD), depression, Rett syndrome, and fetal alcohol spectrum disorder (FASD). Valproic acid and SAMe are antagonistic epigenetic modulators whether administered in utero or postnatally. However, VPA is a major human teratogen and, whenever possible, should not be used by pregnant women. Most currently relevant data come from experimental animal studies that aimed to explore the possibility of using these substances as epigenetic modifiers and possible therapeutic agents. In experimental animals, each of these substances was able to alleviate the severity of several well-known diseases by inducing changes in the expression of affected genes or by other yet unknown mechanisms. We believe that additional studies are needed to further explore the possibility of using these substances, and similar compounds, for the treatment of "epigenetic human diseases".
Collapse
Affiliation(s)
- Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel;
| | - Liza Weinstein-Fudim
- Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel;
| | - Maria Becker
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| |
Collapse
|
5
|
Bailey J, Douglas H, Masino L, de Carvalho LPS, Argyrou A. Human Mat2A Uses an Ordered Kinetic Mechanism and Is Stabilized but Not Regulated by Mat2B. Biochemistry 2021; 60:3621-3632. [PMID: 34780697 PMCID: PMC8638259 DOI: 10.1021/acs.biochem.1c00672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methionine adenosyltransferase (MAT) catalyzes the adenosine 5'-triphosphate (ATP) and l-methionine (l-Met) dependent formation of S-adenosyl-l-methionine (SAM), the principal methyl donor of most biological transmethylation reactions. We carried out in-depth kinetic studies to further understand its mechanism and interaction with a potential regulator, Mat2B. The initial velocity pattern and results of product inhibition by SAM, phosphate, and pyrophosphate, and dead-end inhibition by the l-Met analog cycloleucine (l-cLeu) suggest that Mat2A follows a strictly ordered kinetic mechanism where ATP binds before l-Met and with SAM released prior to random release of phosphate and pyrophosphate. Isothermal titration calorimetry (ITC) showed binding of ATP to Mat2A with a Kd of 80 ± 30 μM, which is close to the Km(ATP) of 50 ± 10 μM. In contrast, l-Met or l-cLeu showed no binding to Mat2A in the absence of ATP; however, binding to l-cLeu was observed in the presence of ATP. The ITC results are fully consistent with the product and dead-inhibition results obtained. We also carried out kinetic studies in the presence of the physiological regulator Mat2B. Under conditions where all Mat2A is found in complex with Mat2B, no significant change in the kinetic parameters was observed despite confirmation of a very high binding affinity of Mat2A to Mat2B (Kd of 6 ± 1 nM). Finally, we found that while Mat2A is unstable at low concentrations (<100 nM), rapidly losing activity at 37 °C, it retained full activity for at least 2 h when Mat2B was present at the known 2:1 Mat2A/Mat2B stoichiometry.
Collapse
Affiliation(s)
- Jonathan Bailey
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.,Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Holly Douglas
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Laura Masino
- Structural Biology Scientific Technology Platform, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Luiz Pedro Sorio de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Argyrides Argyrou
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| |
Collapse
|
6
|
Exploiting binding-site arginines in drug design: Recent examples. Bioorg Med Chem Lett 2020; 30:127442. [DOI: 10.1016/j.bmcl.2020.127442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 11/21/2022]
|
7
|
Stipanuk MH. Metabolism of Sulfur-Containing Amino Acids: How the Body Copes with Excess Methionine, Cysteine, and Sulfide. J Nutr 2020; 150:2494S-2505S. [PMID: 33000151 DOI: 10.1093/jn/nxaa094] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Metabolism of excess methionine (Met) to homocysteine (Hcy) by transmethylation is facilitated by the expression of methionine adenosyltransferase (MAT) I/III and glycine N-methyltransferase (GNMT) in liver, and a lack of either enzyme results in hypermethioninemia despite normal concentrations of MATII and methyltransferases other than GNMT. The further metabolism of Hcy by the transsulfuration pathway is facilitated by activation of cystathionine β-synthase (CBS) by S-adenosylmethionine (SAM) as well as the relatively high KM of CBS for Hcy. Transmethylation plus transsulfuration effects catabolism of the Met molecule along with transfer of the sulfur atom of Met to serine to synthesize cysteine (Cys). Oxidation and excretion of Met sulfur depend upon Cys catabolism and sulfur oxidation pathways. Excess Cys is oxidized by cysteine dioxygenase 1 (CDO1) and further metabolized to taurine or sulfate. Some Cys is normally metabolized by desulfhydration pathways, and the hydrogen sulfide (H2S) produced is further oxidized to sulfate. If Cys or Hcy concentrations are elevated, Cys or Hcy desulfhydration can result in excess H2S and thiosulfate production. Excess Cys or Met may also promote their limited metabolism by transamination pathways.
Collapse
Affiliation(s)
- Martha H Stipanuk
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| |
Collapse
|
8
|
Panmanee J, Antonyuk SV, Hasnain SS. Structural basis of the dominant inheritance of hypermethioninemia associated with the Arg264His mutation in the MAT1A gene. Acta Crystallogr D Struct Biol 2020; 76:594-607. [PMID: 32496220 PMCID: PMC7271947 DOI: 10.1107/s2059798320006002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Methionine adenosyltransferase (MAT) deficiency, characterized by isolated persistent hypermethioninemia (IPH), is caused by mutations in the MAT1A gene encoding MATαl, one of the major hepatic enzymes. Most of the associated hypermethioninemic conditions are inherited as autosomal recessive traits; however, dominant inheritance of hypermethioninemia is caused by an Arg264His (R264H) mutation. This mutation has been confirmed in a screening programme of newborns as the most common mutation in babies with IPH. Arg264 makes an inter-subunit salt bridge located at the dimer interface where the active site assembles. Here, it is demonstrated that the R264H mutation results in greatly reduced MAT activity, while retaining its ability to dimerize, indicating that the lower activity arises from alteration at the active site. The first crystallographic structure of the apo form of the wild-type MATαl enzyme is provided, which shows a tetrameric assembly in which two compact dimers combine to form a catalytic tetramer. In contrast, the crystal structure of the MATαl R264H mutant reveals a weaker dimeric assembly, suggesting that the mutation lowers the affinity for dimer-dimer interaction. The formation of a hetero-oligomer with the regulatory MATβV1 subunit or incubation with a quinolone-based compound (SCR0911) results in the near-full recovery of the enzymatic activity of the pathogenic mutation R264H, opening a clear avenue for a therapeutic solution based on chemical interventions that help to correct the defect of the enzyme in its ability to metabolize methionine.
Collapse
Affiliation(s)
- Jiraporn Panmanee
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - S. Samar Hasnain
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom
| |
Collapse
|
9
|
Jin G, Li Z, Xiao F, Qi X, Sun X. Optimization of activity localization of quinoline derivatives: Design, synthesis, and dual evaluation of biological activity for potential antitumor and antibacterial agents. Bioorg Chem 2020; 99:103837. [DOI: 10.1016/j.bioorg.2020.103837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/25/2019] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
|
10
|
Huber TD, Clinger JA, Liu Y, Xu W, Miller MD, Phillips GN, Thorson JS. Methionine Adenosyltransferase Engineering to Enable Bioorthogonal Platforms for AdoMet-Utilizing Enzymes. ACS Chem Biol 2020; 15:695-705. [PMID: 32091873 DOI: 10.1021/acschembio.9b00943] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The structural conservation among methyltransferases (MTs) and MT functional redundancy is a major challenge to the cellular study of individual MTs. As a first step toward the development of an alternative biorthogonal platform for MTs and other AdoMet-utilizing enzymes, we describe the evaluation of 38 human methionine adenosyltransferase II-α (hMAT2A) mutants in combination with 14 non-native methionine analogues to identify suitable bioorthogonal mutant/analogue pairings. Enabled by the development and implementation of a hMAT2A high-throughput (HT) assay, this study revealed hMAT2A K289L to afford a 160-fold inversion of the hMAT2A selectivity index for a non-native methionine analogue over the native substrate l-Met. Structure elucidation of K289L revealed the mutant to be folded normally with minor observed repacking within the modified substrate pocket. This study highlights the first example of exchanging l-Met terminal carboxylate/amine recognition elements within the hMAT2A active-site to enable non-native bioorthgonal substrate utilization. Additionally, several hMAT2A mutants and l-Met substrate analogues produced AdoMet analogue products with increased stability. As many AdoMet-producing (e.g., hMAT2A) and AdoMet-utlizing (e.g., MTs) enzymes adopt similar active-site strategies for substrate recognition, the proof of concept first generation hMAT2A engineering highlighted herein is expected to translate to a range of AdoMet-utilizing target enzymes.
Collapse
Affiliation(s)
- Tyler D. Huber
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | | - Yang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | | | | | | - Jon S. Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
- Center for Pharmaceutical Research and Innovation (CPRI), College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
11
|
Murray B, Barbier-Torres L, Fan W, Mato JM, Lu SC. Methionine adenosyltransferases in liver cancer. World J Gastroenterol 2019; 25:4300-4319. [PMID: 31496615 PMCID: PMC6710175 DOI: 10.3748/wjg.v25.i31.4300] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/31/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Methionine adenosyltransferases (MATs) are essential enzymes for life as they produce S-adenosylmethionine (SAMe), the biological methyl donor required for a plethora of reactions within the cell. Mammalian systems express two genes, MAT1A and MAT2A, which encode for MATα1 and MATα2, the catalytic subunits of the MAT isoenzymes, respectively. A third gene MAT2B, encodes a regulatory subunit known as MATβ which controls the activity of MATα2. MAT1A, which is mainly expressed in hepatocytes, maintains the differentiated state of these cells, whilst MAT2A and MAT2B are expressed in extrahepatic tissues as well as non-parenchymal cells of the liver (e.g., hepatic stellate and Kupffer cells). The biosynthesis of SAMe is impaired in patients with chronic liver disease and liver cancer due to decreased expression and inactivation of MATα1. A switch from MAT1A to MAT2A/MAT2B occurs in multiple liver diseases and during liver growth and dedifferentiation, but this change in the expression pattern of MATs results in reduced hepatic SAMe level. Decades of study have utilized the Mat1a-knockout (KO) mouse that spontaneously develops non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) to elucidate a variety of mechanisms by which MAT proteins dysregulation contributes to liver carcinogenesis. An increasing volume of work indicates that MATs have SAMe-independent functions, distinct interactomes and multiple subcellular localizations. Here we aim to provide an overview of MAT biology including genes, isoenzymes and their regulation to provide the context for understanding consequences of their dysregulation. We will highlight recent breakthroughs in the field and underscore the importance of MAT’s in liver tumorigenesis as well as their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Ben Murray
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Lucia Barbier-Torres
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Wei Fan
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, Derio 48160, Bizkaia, Spain
| | - Shelly C Lu
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|