1
|
Cui M, Wei Y, Tan J, Li T, Jiao X, Zhou Y. Biochemical investigations of polyphenol degradation enzymes in the phototrophic bacterium Rubrivivax gelatinosus. Biochem J 2023; 480:1753-1766. [PMID: 37903000 DOI: 10.1042/bcj20230387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/01/2023]
Abstract
Phloroglucinol (1,3,5-trihydroxybenzene) is an important intermediate in the degradation of flavonoids and tannins by anaerobic bacteria. Recent studies have shed light on the enzymatic mechanism of phloroglucinol degradation in butyrate-forming anaerobic bacteria, including environmental and intestinal bacteria such as Clostridium and Flavonifractor sp. Phloroglucinol degradation gene clusters have also been identified in other metabolically diverse bacteria, although the polyphenol metabolism of these microorganisms remain largely unexplored. Here, we describe biochemical studies of polyphenol degradation enzymes found in the purple non-sulfur bacterium Rubrivivax gelatinosus IL144, an anaerobic photoheterotroph reported to utilize diverse organic compounds as carbon sources for growth. In addition to the phloroglucinol reductase and dihydrophloroglucinol cyclohydrolase that catalyze phloroglucinol degradation, we characterize a Mn2+-dependent phloretin hydrolase that catalyzes the cleavage of phloretin into phloroglucinol and phloretic acid. We also report a Mn2+-dependent decarboxylase (DeC) that catalyzes the reversible decarboxylation of 2,4,6-trihydroxybenzoate to form phloroglucinol. A bioinformatics search led to the identification of DeC homologs in diverse soil and gut bacteria, and biochemical studies of a DeC homolog from the human gut bacterium Flavonifractor plautii demonstrated that it is also a 2,4,6-trihydroxybenzoate decarboxylase. Our study expands the range of enzymatic mechanisms for phloroglucinol formation, and provides further biochemical insight into polyphenol metabolism in the anaerobic biosphere.
Collapse
Affiliation(s)
- Mengyu Cui
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Jason Tan
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Tong Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Yan Zhou
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| |
Collapse
|
2
|
Zhou Y, Wei Y, Jiang L, Jiao X, Zhang Y. Anaerobic phloroglucinol degradation by Clostridium scatologenes. mBio 2023; 14:e0109923. [PMID: 37341492 PMCID: PMC10470551 DOI: 10.1128/mbio.01099-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 06/22/2023] Open
Abstract
Polyphenols are abundant in nature, and their anaerobic biodegradation by gut and soil bacteria is a topic of great interest. The O2 requirement of phenol oxidases is thought to explain the microbial inertness of phenolic compounds in anoxic environments, such as peatlands, termed the enzyme latch hypothesis. A caveat of this model is that certain phenols are known to be degraded by strict anaerobic bacteria, although the biochemical basis for this process is incompletely understood. Here, we report the discovery and characterization of a gene cluster in the environmental bacterium Clostridium scatologenes for the degradation phloroglucinol (1,3,5-trihydroxybenzene), a key intermediate in the anaerobic degradation of flavonoids and tannins, which constitute the most abundant polyphenols in nature. The gene cluster encodes the key C-C cleavage enzyme dihydrophloroglucinol cyclohydrolase, as well as (S)-3-hydroxy-5-oxo-hexanoate dehydrogenase and triacetate acetoacetate-lyase, which enable phloroglucinol to be utilized as a carbon and energy source. Bioinformatics studies revealed the presence of this gene cluster in phylogenetically and metabolically diverse gut and environmental bacteria, with potential impacts on human health and carbon preservation in peat soils and other anaerobic environmental niches. IMPORTANCE This study provides novel insights into the microbiota's anaerobic metabolism of phloroglucinol, a critical intermediate in the degradation of polyphenols in plants. Elucidation of this anaerobic pathway reveals enzymatic mechanisms for the degradation of phloroglucinol into short-chain fatty acids and acetyl-CoA, which are used as a carbon and energy source for bacterium growth. Bioinformatics studies suggested the prevalence of this pathway in phylogenetically and metabolically diverse gut and environmental bacteria, with potential impacts on carbon preservation in peat soils and human gut health.
Collapse
Affiliation(s)
- Yan Zhou
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yifeng Wei
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Li Jiang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Department of Chemistry, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
A carbon-carbon hydrolase from human gut probiotics Flavonifractor plautii catalyzes phloretin conversion. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Structure-Aware Mycobacterium tuberculosis Functional Annotation Uncloaks Resistance, Metabolic, and Virulence Genes. mSystems 2021; 6:e0067321. [PMID: 34726489 PMCID: PMC8562490 DOI: 10.1128/msystems.00673-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accurate and timely functional genome annotation is essential for translating basic pathogen research into clinically impactful advances. Here, through literature curation and structure-function inference, we systematically update the functional genome annotation of Mycobacterium tuberculosis virulent type strain H37Rv. First, we systematically curated annotations for 589 genes from 662 publications, including 282 gene products absent from leading databases. Second, we modeled 1,711 underannotated proteins and developed a semiautomated pipeline that captured shared function between 400 protein models and structural matches of known function on Protein Data Bank, including drug efflux proteins, metabolic enzymes, and virulence factors. In aggregate, these structure- and literature-derived annotations update 940/1,725 underannotated H37Rv genes and generate hundreds of functional hypotheses. Retrospectively applying the annotation to a recent whole-genome transposon mutant screen provided missing function for 48% (13/27) of underannotated genes altering antibiotic efficacy and 33% (23/69) required for persistence during mouse tuberculosis (TB) infection. Prospective application of the protein models enabled us to functionally interpret novel laboratory generated pyrazinamide (PZA)-resistant mutants of unknown function, which implicated the emerging coenzyme A depletion model of PZA action in the mutants’ PZA resistance. Our findings demonstrate the functional insight gained by integrating structural modeling and systematic literature curation, even for widely studied microorganisms. Functional annotations and protein structure models are available at https://tuberculosis.sdsu.edu/H37Rv in human- and machine-readable formats. IMPORTANCEMycobacterium tuberculosis, the primary causative agent of tuberculosis, kills more humans than any other infectious bacterium. Yet 40% of its genome is functionally uncharacterized, leaving much about the genetic basis of its resistance to antibiotics, capacity to withstand host immunity, and basic metabolism yet undiscovered. Irregular literature curation for functional annotation contributes to this gap. We systematically curated functions from literature and structural similarity for over half of poorly characterized genes, expanding the functionally annotated Mycobacterium tuberculosis proteome. Applying this updated annotation to recent in vivo functional screens added functional information to dozens of clinically pertinent proteins described as having unknown function. Integrating the annotations with a prospective functional screen identified new mutants resistant to a first-line TB drug, supporting an emerging hypothesis for its mode of action. These improvements in functional interpretation of clinically informative studies underscore the translational value of this functional knowledge. Structure-derived annotations identify hundreds of high-confidence candidates for mechanisms of antibiotic resistance, virulence factors, and basic metabolism and other functions key in clinical and basic tuberculosis research. More broadly, they provide a systematic framework for improving prokaryotic reference annotations.
Collapse
|
5
|
Flavonoid-Modifying Capabilities of the Human Gut Microbiome-An In Silico Study. Nutrients 2021; 13:nu13082688. [PMID: 34444848 PMCID: PMC8398226 DOI: 10.3390/nu13082688] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are a major group of dietary plant polyphenols and have a positive health impact, but their modification and degradation in the human gut is still widely unknown. Due to the rise of metagenome data of the human gut microbiome and the assembly of hundreds of thousands of bacterial metagenome-assembled genomes (MAGs), large-scale screening for potential flavonoid-modifying enzymes of human gut bacteria is now feasible. With sequences of characterized flavonoid-transforming enzymes as queries, the Unified Human Gastrointestinal Protein catalog was analyzed and genes encoding putative flavonoid-modifying enzymes were quantified. The results revealed that flavonoid-modifying enzymes are often encoded in gut bacteria hitherto not considered to modify flavonoids. The enzymes for the physiologically important daidzein-to-equol conversion, well studied in Slackiaisoflavoniconvertens, were encoded only to a minor extent in Slackia MAGs, but were more abundant in Adlercreutzia equolifaciens and an uncharacterized Eggerthellaceae species. In addition, enzymes with a sequence identity of about 35% were encoded in highly abundant MAGs of uncultivated Collinsella species, which suggests a hitherto uncharacterized daidzein-to-equol potential in these bacteria. Of all potential flavonoid modification steps, O-deglycosylation (including derhamnosylation) was by far the most abundant in this analysis. In contrast, enzymes putatively involved in C-deglycosylation were detected less often in human gut bacteria and mainly found in Agathobacter faecis (formerly Roseburia faecis). Homologs to phloretin hydrolase, flavanonol/flavanone-cleaving reductase and flavone reductase were of intermediate abundance (several hundred MAGs) and mainly prevalent in Flavonifractor plautii. This first comprehensive insight into the black box of flavonoid modification in the human gut highlights many hitherto overlooked and uncultured bacterial genera and species as potential key organisms in flavonoid modification. This could lead to a significant contribution to future biochemical-microbiological investigations on gut bacterial flavonoid transformation. In addition, our results are important for individual nutritional recommendations and for biotechnological applications that rely on novel enzymes catalyzing potentially useful flavonoid modification reactions.
Collapse
|
6
|
Decrypting bacterial polyphenol metabolism in an anoxic wetland soil. Nat Commun 2021; 12:2466. [PMID: 33927199 PMCID: PMC8084988 DOI: 10.1038/s41467-021-22765-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023] Open
Abstract
Microorganisms play vital roles in modulating organic matter decomposition and nutrient cycling in soil ecosystems. The enzyme latch paradigm posits microbial degradation of polyphenols is hindered in anoxic peat leading to polyphenol accumulation, and consequently diminished microbial activity. This model assumes that polyphenols are microbially unavailable under anoxia, a supposition that has not been thoroughly investigated in any soil type. Here, we use anoxic soil reactors amended with and without a chemically defined polyphenol to test this hypothesis, employing metabolomics and genome-resolved metaproteomics to interrogate soil microbial polyphenol metabolism. Challenging the idea that polyphenols are not bioavailable under anoxia, we provide metabolite evidence that polyphenols are depolymerized, resulting in monomer accumulation, followed by the generation of small phenolic degradation products. Further, we show that soil microbiome function is maintained, and possibly enhanced, with polyphenol addition. In summary, this study provides chemical and enzymatic evidence that some soil microbiota can degrade polyphenols under anoxia and subvert the assumed polyphenol lock on soil microbial metabolism.
Collapse
|