1
|
Ahmad A, Kumar V, Kushwaha T, Kumar A, Sehgal D, Inampudi KK, Somlata. AGC family kinase of Entamoeba histolytica: Decoding the members biochemically. PLoS Pathog 2024; 20:e1012729. [PMID: 39561205 PMCID: PMC11642994 DOI: 10.1371/journal.ppat.1012729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/13/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Entamoeba histolytica, a protozoan parasite, is the causative agent of amoebiasis, which is a significant global health concern. The virulence mechanisms underlying its pathogenicity are multifaceted and complex. However, endocytic processes and motility are well accepted virulence determinants. As previously reported, an AGCK family kinase, EhAGCK1 to be involved in trogocytosis exclusively while another one from same family named EhAGCK2 participates in all actin dependent endocytic processes. As the kinase dead mutants of EhAGCK1 showed significant defect in destruction of live host cells and also the localisation pattern of same is distinguishable from EhAGCK2. From observations so far, it appears that former initiates a distinguishable signaling cascade. In this work, we have demonstrated distinct biochemical properties of kinases involved in related yet distinguishable endocytic processes for the first time. Our biochemical characterization highlights distinct ion dependency of EhAGCK1 along with substrate specificity. We also show upstream activator of these kinases, 3-phosphoinositide dependent kinase 1 (PDK1) activity and its role in activating the kinase activity. The kinases exhibit property of autophosphorylation, and which may regulate the kinase activity subsequently. Summarily, these studies show that EhAGCK1 and EhAGCK2 show distinct biochemical properties which further confirm their unique role in related endocytic processes of trogocytosis and phagocytosis.
Collapse
Affiliation(s)
- Azhar Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Vikas Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Akash Kumar
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Deepak Sehgal
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, Uttar Pradesh, India
| | - Krishna K. Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Somlata
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
2
|
Wang Z, Wang Z, Li X, Chen Z, Liu Y, Zhang F, Dai Q, Yu Q, Li N. Identification and Analysis of the Expression of the PIP5K Gene Family in Tomatoes. Int J Mol Sci 2023; 25:159. [PMID: 38203328 PMCID: PMC10778592 DOI: 10.3390/ijms25010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
To explore the function of phosphatidylinositol 4-phosphate 5-kinase (PIP5K) in tomatoes, members of the tomato PIP5K family were identified and characterized using bioinformatic methods, and their expression patterns were also analyzed under salt stress and in different tissues. Twenty-one PIP5K members-namely, SlPIP5K1-SlPIP5K21-were identified from ten chromosomes, and these were divided into three groups according to a phylogenetic analysis. Further bioinformatic analysis showed four pairs of collinear relationships and fragment replication events among the SlPIP5K family members. To understand the possible roles of the SlPIP5Ks, a cis-acting element analysis was conducted, which indicated that tomato PIP5Ks could be associated with plant growth, hormones, and stress responses. We further validated the results of the in silico analysis by integrating RNA-seq and qRT-PCR techniques for salt- and hormone-treated tomato plants. Our results showed that SlPIP5K genes exhibited tissue- and treatment-specific patterns, and some of the SlPIP5Ks exhibited significantly altered expressions after our treatments, suggesting that they might be involved in these stresses. We selected one of the SlPIP5Ks that responded to our treatments, SlPIP5K2, to further understand its subcellular localization. Our results showed that SlPIP5K2 was located on the membrane. This study lays a foundation for the analysis of the biological functions of the tomato SlPIP5K genes and can also provide a theoretical basis for the selection and breeding of new tomato varieties and germplasm innovation, especially under salt stress.
Collapse
Affiliation(s)
- Zepeng Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhongyu Wang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Xianguo Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhaolong Chen
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yuxiang Liu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Fulin Zhang
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
- College of Horticulture, Xinjiang Agricultural University, Urumqi 830052, China
| | - Qi Dai
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Qinghui Yu
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| | - Ning Li
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (Z.W.); (Z.W.); (X.L.); (Z.C.); (Y.L.); (F.Z.); (Q.D.)
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi 830091, China
| |
Collapse
|
3
|
Verner Z, Žárský V, Le T, Narayanasamy RK, Rada P, Rozbeský D, Makki A, Belišová D, Hrdý I, Vancová M, Lender C, König C, Bruchhaus I, Tachezy J. Anaerobic peroxisomes in Entamoeba histolytica metabolize myo-inositol. PLoS Pathog 2021; 17:e1010041. [PMID: 34780573 PMCID: PMC8629394 DOI: 10.1371/journal.ppat.1010041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/29/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022] Open
Abstract
Entamoeba histolytica is believed to be devoid of peroxisomes, like most anaerobic protists. In this work, we provided the first evidence that peroxisomes are present in E. histolytica, although only seven proteins responsible for peroxisome biogenesis (peroxins) were identified (Pex1, Pex6, Pex5, Pex11, Pex14, Pex16, and Pex19). Targeting matrix proteins to peroxisomes is reduced to the PTS1-dependent pathway mediated via the soluble Pex5 receptor, while the PTS2 receptor Pex7 is absent. Immunofluorescence microscopy showed that peroxisomal markers (Pex5, Pex14, Pex16, Pex19) are present in vesicles distinct from mitosomes, the endoplasmic reticulum, and the endosome/phagosome system, except Pex11, which has dual localization in peroxisomes and mitosomes. Immunoelectron microscopy revealed that Pex14 localized to vesicles of approximately 90-100 nm in diameter. Proteomic analyses of affinity-purified peroxisomes and in silico PTS1 predictions provided datasets of 655 and 56 peroxisomal candidates, respectively; however, only six proteins were shared by both datasets, including myo-inositol dehydrogenase (myo-IDH). Peroxisomal NAD-dependent myo-IDH appeared to be a dimeric enzyme with high affinity to myo-inositol (Km 0.044 mM) and can utilize also scyllo-inositol, D-glucose and D-xylose as substrates. Phylogenetic analyses revealed that orthologs of myo-IDH with PTS1 are present in E. dispar, E. nutalli and E. moshkovskii but not in E. invadens, and form a monophyletic clade of mostly peroxisomal orthologs with free-living Mastigamoeba balamuthi and Pelomyxa schiedti. The presence of peroxisomes in E. histolytica and other archamoebae breaks the paradigm of peroxisome absence in anaerobes and provides a new potential target for the development of antiparasitic drugs.
Collapse
Affiliation(s)
- Zdeněk Verner
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Tien Le
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ravi Kumar Narayanasamy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Petr Rada
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Daniel Rozbeský
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Abhijith Makki
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Darja Belišová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Ivan Hrdý
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Marie Vancová
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Ceske Budejovice, Czech Republic
| | - Corinna Lender
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Constantin König
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
4
|
Shrivastav MT, Malik Z, Somlata. Revisiting Drug Development Against the Neglected Tropical Disease, Amebiasis. Front Cell Infect Microbiol 2021; 10:628257. [PMID: 33718258 PMCID: PMC7943716 DOI: 10.3389/fcimb.2020.628257] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/30/2020] [Indexed: 11/15/2022] Open
Abstract
Amebiasis is a neglected tropical disease which is caused by the protozoan parasite Entamoeba histolytica. This disease is one of the leading causes of diarrhea globally, affecting largely impoverished residents in developing countries. Amebiasis also remains one of the top causes of gastrointestinal diseases in returning international travellers. Despite having many side effects, metronidazole remains the drug of choice as an amebicidal tissue-active agent. However, emergence of metronidazole resistance in pathogens having similar anaerobic metabolism and also in laboratory strains of E. histolytica has necessitated the identification and development of new drug targets and therapeutic strategies against the parasite. Recent research in the field of amebiasis has led to a better understanding of the parasite’s metabolic and cellular pathways and hence has been useful in identifying new drug targets. On the other hand, new molecules effective against amebiasis have been mined by modifying available compounds, thereby increasing their potency and efficacy and also by repurposing existing approved drugs. This review aims at compiling and examining up to date information on promising drug targets and drug molecules for the treatment of amebiasis.
Collapse
Affiliation(s)
- Manish T Shrivastav
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Zainab Malik
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Somlata
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
5
|
Genome-wide systematic characterization and expression analysis of the phosphatidylinositol 4-phosphate 5-kinases in plants. Gene 2020; 756:144915. [PMID: 32580009 DOI: 10.1016/j.gene.2020.144915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/07/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) are key enzymes in the process of phosphatidylinositol signaling pathway and have essential functions in growth, development, and biotic and abiotic stresses responses in plants. However, the evolutionary history and patterns of PIP5K genes in plants have not been examined systematically. Here, we use whole-genome sequences from eight plant species of land plants and algae to define the evolutionary relationships between these proteins in plants. 85 PIP5K genes were identified and divided into two subfamilies based on phylogenetic analyses. PIP5K members in subfamily II underwent several duplication events in land plants, resulting in multiple gene copies in angiosperms, while PIP5K members in subfamily I displayed low-copy numbers and lost in eudicots. Furthermore, PIP5K genes within the same subfamily had similar motifs and intron/exon features. Nine duplicated soybean gene pairs, four duplicated Arabidopsis gene pairs and two rice duplicated gene pairs were identified and many of them localized in synteny genomic regions. These duplicate events were formed by Whole-genome duplication (WGD)/segmental duplications. In addition, the ratios of non-synonymous to synonymous substitutions (Ka/Ks) showed that the PIP5K family had undergone purifying selection in higher plants. Expression analysis showed that PIP5K genes had complex and variable expression patterns in different developmental stages. The specificity of these genes is utilized to provide evidence for selective expression in the evolutionary process.
Collapse
|
6
|
Castellanos-Castro S, Bolaños J, Orozco E. Lipids in Entamoeba histolytica: Host-Dependence and Virulence Factors. Front Cell Infect Microbiol 2020; 10:75. [PMID: 32211340 PMCID: PMC7075943 DOI: 10.3389/fcimb.2020.00075] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/14/2020] [Indexed: 11/19/2022] Open
Abstract
Lipids are essential players in parasites pathogenesis. In particular, the highly phagocytic trophozoites of Entamoeba histolytica, the causative agent of amoebiasis, exhibit a dynamic membrane fusion and fission, in which lipids strongly participate; particularly during the overstated motility of the parasite to reach and attack the epithelia and ingest target cells. Synthesis and metabolism of lipids in this protozoan present remarkable difference with those performed by other eukaryotes. Here, we reviewed the current knowledge on lipids in E. histolytica. Trophozoites synthesize phosphatidylcholine and phosphatidylethanolamine by the Kennedy pathway; and sphingolipids, phosphatidylserine, and phosphatidylinositol, by processes similar to those used by other eukaryotes. However, trophozoites lack enzymes for cholesterol and fatty acids synthesis, which are scavenged from the host or culture medium by specific mechanisms. Cholesterol, a fundamental molecule for the expression of virulence, is transported from the medium into the trophozoites by EhNPC1 and EhNPC2 proteins. Inside cells, lipids are distributed by different pathways, including by the participation of the endosomal sorting complex required for transport (ESCRT), involved in vesicle fusion and fission. Cholesterol interacts with the phospholipid lysobisphosphatidic acid (LBPA) and EhADH, an ALIX family protein, also involved in phagocytosis. In this review, we summarize the known information on phospholipids synthesis and cholesterol transport as well as their metabolic pathways in E. histolytica; highlighting the mechanisms used by trophozoites to dispose lipids involved in the virulence processes.
Collapse
Affiliation(s)
- Silvia Castellanos-Castro
- College of Sciences and Humanities, Autonomous University of Mexico City, Mexico City, Mexico.,BioImage Analysis Unit, Pasteur Institute, Paris, France
| | - Jeni Bolaños
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico.,Centro Multidisciplinario de Estudios en Biotecnología, FMVZ, Universidad Michoacana de San Nnicolás Hidalgo, Morelia, Mexico
| | - Esther Orozco
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| |
Collapse
|
7
|
Sharma S, Agarwal S, Bharadwaj R, Somlata, Bhattacharya S, Bhattacharya A. Novel regulatory roles of PtdIns(4,5)P2generating enzyme EhPIPKI in actin dynamics and phagocytosis ofEntamoeba histolytica. Cell Microbiol 2019; 21:e13087. [DOI: 10.1111/cmi.13087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Shalini Sharma
- School of Life SciencesJawaharlal Nehru University New Delhi India
| | - Shalini Agarwal
- School of Life SciencesJawaharlal Nehru University New Delhi India
| | - Ravi Bharadwaj
- School of MedicineUMASS Medical School Worcester Massachusetts USA
| | - Somlata
- Multidisciplinary Centre for Advance Research and StudiesJamia Milia Islamia New Delhi India
| | - Sudha Bhattacharya
- School of Environmental SciencesJawaharlal Nehru University New Delhi India
| | | |
Collapse
|
8
|
Nakada-Tsukui K, Watanabe N, Maehama T, Nozaki T. Phosphatidylinositol Kinases and Phosphatases in Entamoeba histolytica. Front Cell Infect Microbiol 2019; 9:150. [PMID: 31245297 PMCID: PMC6563779 DOI: 10.3389/fcimb.2019.00150] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (PtdIns) metabolism is indispensable in eukaryotes. Phosphoinositides (PIs) are phosphorylated derivatives of PtdIns and consist of seven species generated by reversible phosphorylation of the inositol moieties at the positions 3, 4, and 5. Each of the seven PIs has a unique subcellular and membrane domain distribution. In the enteric protozoan parasite Entamoeba histolytica, it has been previously shown that the PIs phosphatidylinositol 3-phosphate (PtdIns3P), PtdIns(4,5)P2, and PtdIns(3,4,5)P3 are localized to phagosomes/phagocytic cups, plasma membrane, and phagocytic cups, respectively. The localization of these PIs in E. histolytica is similar to that in mammalian cells, suggesting that PIs have orthologous functions in E. histolytica. In contrast, the conservation of the enzymes that metabolize PIs in this organism has not been well-documented. In this review, we summarized the full repertoire of the PI kinases and PI phosphatases found in E. histolytica via a genome-wide survey of the current genomic information. E. histolytica appears to have 10 PI kinases and 23 PI phosphatases. It has a panel of evolutionarily conserved enzymes that generate all the seven PI species. However, class II PI 3-kinases, type II PI 4-kinases, type III PI 5-phosphatases, and PI 4P-specific phosphatases are not present. Additionally, regulatory subunits of class I PI 3-kinases and type III PI 4-kinases have not been identified. Instead, homologs of class I PI 3-kinases and PTEN, a PI 3-phosphatase, exist as multiple isoforms, which likely reflects that elaborate signaling cascades mediated by PtdIns(3,4,5)P3 are present in this organism. There are several enzymes that have the nuclear localization signal: one phosphatidylinositol phosphate (PIP) kinase, two PI 3-phosphatases, and one PI 5-phosphatase; this suggests that PI metabolism also has conserved roles related to nuclear functions in E. histolytica, as it does in model organisms.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|