1
|
Fonda BD, Murray DT. The potent PHL4 transcription factor effector domain contains significant disorder. Protein Sci 2024; 33:e5214. [PMID: 39548754 PMCID: PMC11568365 DOI: 10.1002/pro.5214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024]
Abstract
The phosphate-starvation response transcription-factor protein family is essential to plant response to low-levels of phosphate. Proteins in this transcription factor (TF) family act by altering various gene expression levels, such as increasing levels of the acid phosphatase proteins which catalyze the conversion of inorganic phosphates to bio-available compounds. There are few structural characterizations of proteins in this TF family, none of which address the potent TF activation domains. The phosphate-starvation response-like protein-4 (PHL4) protein from this family has garnered interest due to the unusually high TF activation activity of the N-terminal domain. Here, we demonstrate using solution nuclear magnetic resonance (NMR) measurements that the PHL4 N-terminal activating TF effector domain is mainly an intrinsically disordered domain of over 200 residues, and that the C-terminal region of PHL4 is also disordered. Additionally, we present evidence from size-exclusion chromatography, diffusion NMR measurements, and a cross-linking assay suggesting full-length PHL4 forms a trimeric or tetrameric assembly. Together, the data indicate the N- and C-terminal disordered domains in PHL4 flank a central folded region that likely forms the ordered oligomer of PHL4. This work provides a foundation for future studies detailing how the conformations and molecular motions of PHL4 change as it acts as a potent activator of gene expression in phosphate metabolism. Such a detailed mechanistic understanding of TF function will benefit genetic engineering efforts that take advantage of this activity to boost transcriptional activation of genes across different organisms.
Collapse
Affiliation(s)
- Blake D. Fonda
- Department of ChemistryUniversity of CaliforniaDavisCaliforniaUSA
| | - Dylan T. Murray
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
2
|
Vo NNT, Yang A, Leesutthiphonchai W, Liu Y, Hughes TR, Judelson HS. Transcription factor binding specificities of the oomycete Phytophthora infestans reflect conserved and divergent evolutionary patterns and predict function. BMC Genomics 2024; 25:710. [PMID: 39044130 PMCID: PMC11267843 DOI: 10.1186/s12864-024-10630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Identifying the DNA-binding specificities of transcription factors (TF) is central to understanding gene networks that regulate growth and development. Such knowledge is lacking in oomycetes, a microbial eukaryotic lineage within the stramenopile group. Oomycetes include many important plant and animal pathogens such as the potato and tomato blight agent Phytophthora infestans, which is a tractable model for studying life-stage differentiation within the group. RESULTS Mining of the P. infestans genome identified 197 genes encoding proteins belonging to 22 TF families. Their chromosomal distribution was consistent with family expansions through unequal crossing-over, which were likely ancient since each family had similar sizes in most oomycetes. Most TFs exhibited dynamic changes in RNA levels through the P. infestans life cycle. The DNA-binding preferences of 123 proteins were assayed using protein-binding oligonucleotide microarrays, which succeeded with 73 proteins from 14 families. Binding sites predicted for representatives of the families were validated by electrophoretic mobility shift or chromatin immunoprecipitation assays. Consistent with the substantial evolutionary distance of oomycetes from traditional model organisms, only a subset of the DNA-binding preferences resembled those of human or plant orthologs. Phylogenetic analyses of the TF families within P. infestans often discriminated clades with canonical and novel DNA targets. Paralogs with similar binding preferences frequently had distinct patterns of expression suggestive of functional divergence. TFs were predicted to either drive life stage-specific expression or serve as general activators based on the representation of their binding sites within total or developmentally-regulated promoters. This projection was confirmed for one TF using synthetic and mutated promoters fused to reporter genes in vivo. CONCLUSIONS We established a large dataset of binding specificities for P. infestans TFs, representing the first in the stramenopile group. This resource provides a basis for understanding transcriptional regulation by linking TFs with their targets, which should help delineate the molecular components of processes such as sporulation and host infection. Our work also yielded insight into TF evolution during the eukaryotic radiation, revealing both functional conservation as well as diversification across kingdoms.
Collapse
Affiliation(s)
- Nguyen N T Vo
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Ally Yang
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Wiphawee Leesutthiphonchai
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
- Current address: Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Yulong Liu
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Timothy R Hughes
- Department of Molecular Genetics and Donnelly Center, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
3
|
Fonda BD, Murray DT. The Potent PHL4 Transcription Factor Effector Domain Contains Significant Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601048. [PMID: 39005418 PMCID: PMC11244893 DOI: 10.1101/2024.06.27.601048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The phosphate-starvation response transcription-factor protein family is essential to plant response to low-levels of phosphate. Proteins in this transcription factor (TF) family act by altering various gene expression levels, such as increasing levels of the acid phosphatase proteins which catalyze the conversion of inorganic phosphates to bio-available compounds. There are few structural characterizations of proteins in this TF family, none of which address the potent TF activation domains. The phosphate-starvation response-like protein-4 (PHL4) protein from this family has garnered interest due to the unusually high TF activation activity of the N-terminal domain. Here, we demonstrate using solution nuclear magnetic resonance (NMR) measurements that the PHL4 N-terminal activating TF effector domain is mainly an intrinsically disordered domain of over 200 residues, and that the C-terminal region of PHL4 is also disordered. Additionally, we present evidence from size-exclusion chromatography, diffusion NMR measurements, and a cross-linking assay suggesting full-length PHL4 forms a tetrameric assembly. Together, the data indicate the N- and C-terminal disordered domains in PHL4 flank a central folded region that likely forms the ordered oligomer of PHL4. This work provides a foundation for future studies detailing how the conformations and molecular motions of PHL4 change as it acts as a potent activator of gene expression in phosphate metabolism. Such a detailed mechanistic understanding of TF function will benefit genetic engineering efforts that take advantage of this activity to boost transcriptional activation of genes across different organisms.
Collapse
Affiliation(s)
- Blake D. Fonda
- Department of Chemistry, University of California, Davis, California, 95616, United States of America
| | - Dylan T. Murray
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, 06926, United States of America
| |
Collapse
|
4
|
Yang SY, Lin WY, Hsiao YM, Chiou TJ. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus. THE PLANT CELL 2024; 36:1504-1523. [PMID: 38163641 PMCID: PMC11062440 DOI: 10.1093/plcell/koad326] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/03/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture.
Collapse
Affiliation(s)
- Shu-Yi Yang
- Institute of Plant Biology, National Taiwan University, Taipei 106319, Taiwan
| | - Wei-Yi Lin
- Department of Agronomy, National Taiwan University, Taipei 106319, Taiwan
| | - Yi-Min Hsiao
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan
| |
Collapse
|
5
|
Zhou CM, Li JX, Zhang TQ, Xu ZG, Ma ML, Zhang P, Wang JW. The structure of B-ARR reveals the molecular basis of transcriptional activation by cytokinin. Proc Natl Acad Sci U S A 2024; 121:e2319335121. [PMID: 38198526 PMCID: PMC10801921 DOI: 10.1073/pnas.2319335121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The phytohormone cytokinin has various roles in plant development, including meristem maintenance, vascular differentiation, leaf senescence, and regeneration. Prior investigations have revealed that cytokinin acts via a phosphorelay similar to the two-component system by which bacteria sense and respond to external stimuli. The eventual targets of this phosphorelay are type-B ARABIDOPSIS RESPONSE REGULATORS (B-ARRs), containing the conserved N-terminal receiver domain (RD), middle DNA binding domain (DBD), and C-terminal transactivation domain. While it has been established for two decades that the phosphoryl transfer from a specific histidyl residue in ARABIDOPSIS HIS PHOSPHOTRANSFER PROTEINS (AHPs) to an aspartyl residue in the RD of B-ARRs results in a rapid transcriptional response to cytokinin, the underlying molecular basis remains unclear. In this work, we determine the crystal structures of the RD-DBD of ARR1 (ARR1RD-DBD) as well as the ARR1DBD-DNA complex from Arabidopsis. Analyses of the ARR1DBD-DNA complex have revealed the structural basis for sequence-specific recognition of the GAT trinucleotide by ARR1. In particular, comparing the ARR1RD-DBD and ARR1DBD-DNA structures reveals that unphosphorylated ARR1RD-DBD exists in a closed conformation with extensive contacts between the RD and DBD. In vitro and vivo functional assays have further suggested that phosphorylation of the RD weakens its interaction with DBD, subsequently permits the DNA binding capacity of DBD, and promotes the transcriptional activity of ARR1. Our findings thus provide mechanistic insights into phosphorelay activation of gene transcription in response to cytokinin.
Collapse
Affiliation(s)
- Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Jian-Xu Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai201602, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Miao-Lian Ma
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
- New Cornerstone Science Laboratory, Shanghai200032, China
| |
Collapse
|
6
|
Xie CG, Jin P, Xu J, Li S, Shi T, Wang R, Jia S, Zhang Z, Guo W, Hao W, Zhou X, Liu J, Gao Y. Genome-Wide Analysis of MYB Transcription Factor Gene Superfamily Reveals BjPHL2a Involved in Modulating the Expression of BjCHI1 in Brassica juncea. PLANTS (BASEL, SWITZERLAND) 2023; 12:1011. [PMID: 36903872 PMCID: PMC10004776 DOI: 10.3390/plants12051011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Brassica juncea is an economically important vegetable and oilseed crop. The MYB transcription factor superfamily is one of the largest transcription factor families in plants, and plays crucial roles in regulating the expression of key genes involved in a variety of physiological processes. However, a systematic analysis of the MYB transcription factor genes in Brassica juncea (BjMYB) has not been performed. In this study, a total of 502 BjMYB superfamily transcription factor genes were identified, including 23 1R-MYBs, 388 R2R3-MYBs, 16 3R-MYBs, 4 4R-MYBs, 7 atypical MYBs, and 64 MYB-CCs, which is approximately 2.4-fold larger than that of AtMYBs. Phylogenetic relationship analysis revealed that the MYB-CC subfamily consists of 64 BjMYB-CC genes. The expression pattern of members of PHL2 subclade homologous genes in Brassica juncea (BjPHL2) after Botrytis cinerea infection were determined, and BjPHL2a was isolated from a yeast one-hybrid screen with the promoter of BjCHI1 as bait. BjPHL2a was found to localize mainly in the nucleus of plant cells. An EMSA assay confirmed that BjPHL2a binds to the Wbl-4 element of BjCHI1. Transiently expressed BjPHL2a activates expression of the GUS reporter system driven by a BjCHI1 mini-promoter in tobacco (Nicotiana benthamiana) leaves. Taken together, our data provide a comprehensive evaluation of BjMYBs and show that BjPHL2a, one of the members of BjMYB-CCs, functions as a transcription activator by interacting with the Wbl-4 element in the promoter of BjCHI1 for targeted gene-inducible expression.
Collapse
Affiliation(s)
- Chang Gen Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Ping Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Jiamin Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Shangze Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Tiantian Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Rui Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Shuangwei Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Zixuan Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Weike Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Wenfang Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Xiaona Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Jun Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Ying Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| |
Collapse
|
7
|
Trejo‐Fregoso R, Rodríguez I, Ávila A, Juárez‐Díaz JA, Rodríguez‐Sotres R, Martínez‐Barajas E, Coello P. Phosphorylation of S11 in PHR1 negatively controls its transcriptional activity. PHYSIOLOGIA PLANTARUM 2022; 174:e13831. [PMID: 36444477 PMCID: PMC10107491 DOI: 10.1111/ppl.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Plant responses to phosphate starvation (-Pi) are very well characterized at the biochemical and molecular levels. The expression of thousands of genes is modified under this stress condition, depending on the action of Phosphate starvation response 1 (PHR1). Existing data indicate that neither the PHR1 transcript nor the quantity or localization of its protein increase during nutrient stress, raising the question of how its activity is regulated. Here, we present data showing that SnRK1 kinase is able to phosphorylate some phosphate starvation response proteins (PSRs), including PHR1. Based on a model of the three-dimensional structure of the catalytic subunit SnRK1α1, docking simulations predicted the binding modes of peptides from PHT1;8, PHO1 and PHR1 with SnRK1. PHR1 recombinant protein interacted in vitro with the catalytic subunits SnRK1α1 and SnRK1α2. A BiFC assay corroborated the in vivo interaction between PHR1 and SnRK1α1 in the cytoplasm and nucleus. Analysis of phosphorylated residues suggested the presence of one phosphorylated site containing the SnRK1 motif at S11, and mutation in this residue disrupted the incorporation of 32 P, suggesting that it is a major phosphorylation site. Electrophoretic mobility shift assay results indicated that the binding of PHR1 to P1BS motifs was not influenced by phosphorylation. Importantly, transient expression assays in Arabidopsis protoplasts showed a decrease in PHR1 activity in contrast with the S11A mutant, suggesting a role for Ser11 as a negative regulatory phosphorylation site. Taken together, these findings suggest that phosphorylation of PHR1 at Ser11 is a mechanism to control the PHR1-mediated adaptive response to -Pi.
Collapse
Affiliation(s)
| | - Iván Rodríguez
- Departamento de BioquímicaFacultad de Química, UNAM. Cd. MxMexico CityMexico
| | - Alejandra Ávila
- Departamento de BioquímicaFacultad de Química, UNAM. Cd. MxMexico CityMexico
| | | | | | | | - Patricia Coello
- Departamento de BioquímicaFacultad de Química, UNAM. Cd. MxMexico CityMexico
| |
Collapse
|
8
|
Mechanistic insights into the regulation of plant phosphate homeostasis by the rice SPX2 - PHR2 complex. Nat Commun 2022; 13:1581. [PMID: 35332155 PMCID: PMC8948245 DOI: 10.1038/s41467-022-29275-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/03/2022] [Indexed: 01/21/2023] Open
Abstract
Phosphate (Pi) starvation response (PHR) transcription factors play key roles in plant Pi homeostasis maintenance. They are negatively regulated by stand-alone SPX proteins, cellular receptors for inositol pyrophosphate (PP-InsP) nutrient messengers. How PP-InsP-bound SPX interacts with PHRs is poorly understood. Here, we report crystal structures of the rice SPX2/InsP6/PHR2 complex and of the PHR2 DNA binding (MYB) domain in complex with target DNA at resolutions of 3.1 Å and 2.7 Å, respectively. In the SPX2/InsP6/PHR2 complex, the signalling-active SPX2 assembles into a domain-swapped dimer conformation and binds two copies of PHR2, targeting both its coiled-coil (CC) oligomerisation domain and MYB domain. Our results reveal that the SPX2 senses PP-InsPs to inactivate PHR2 by establishing severe steric clashes with the PHR2 MYB domain, preventing DNA binding, and by disrupting oligomerisation of the PHR2 CC domain, attenuating promoter binding. Our findings rationalize how PP-InsPs activate SPX receptor proteins to target PHR family transcription factors. SPX receptors regulate plant phosphate response via PHR transcription factors. Here, based on crystal structure analysis of rice PHR2 complexes, the authors propose that SPX2 regulates PHR2 by preventing DNA binding and oligomerisation of the PHR2 CC domain.
Collapse
|
9
|
Zhou J, Hu Q, Xiao X, Yao D, Ge S, Ye J, Li H, Cai R, Liu R, Meng F, Wang C, Zhu JK, Lei M, Xing W. Mechanism of phosphate sensing and signaling revealed by rice SPX1-PHR2 complex structure. Nat Commun 2021; 12:7040. [PMID: 34857773 PMCID: PMC8639918 DOI: 10.1038/s41467-021-27391-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Phosphate, a key plant nutrient, is perceived through inositol polyphosphates (InsPs) by SPX domain-containing proteins. SPX1 an inhibit the PHR2 transcription factor to maintain Pi homeostasis. How SPX1 recognizes an InsP molecule and represses transcription activation by PHR2 remains unclear. Here we show that, upon binding InsP6, SPX1 can disrupt PHR2 dimers and form a 1:1 SPX1-PHR2 complex. The complex structure reveals that SPX1 helix α1 can impose a steric hindrance when interacting with the PHR2 dimer. By stabilizing helix α1, InsP6 allosterically decouples the PHR2 dimer and stabilizes the SPX1-PHR2 interaction. In doing so, InsP6 further allows SPX1 to engage with the PHR2 MYB domain and sterically block its interaction with DNA. Taken together, our results suggest that, upon sensing the surrogate signals of phosphate, SPX1 inhibits PHR2 via a dual mechanism that attenuates dimerization and DNA binding activities of PHR2.
Collapse
Affiliation(s)
- Jia Zhou
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinli Hu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinlong Xiao
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Deqiang Yao
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shenghong Ge
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jin Ye
- MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Haojie Li
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Rujie Cai
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Renyang Liu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Fangang Meng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Chao Wang
- MOE Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mingguang Lei
- Shanghai Center for Plant Stress Biology and Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Weiman Xing
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
10
|
Plant Transcription Factors Involved in Drought and Associated Stresses. Int J Mol Sci 2021; 22:ijms22115662. [PMID: 34073446 PMCID: PMC8199153 DOI: 10.3390/ijms22115662] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
Transcription factors (TFs) play a significant role in signal transduction networks spanning the perception of a stress signal and the expression of corresponding stress-responsive genes. TFs are multi-functional proteins that may simultaneously control numerous pathways during stresses in plants-this makes them powerful tools for the manipulation of regulatory and stress-responsive pathways. In recent years, the structure-function relationships of numerous plant TFs involved in drought and associated stresses have been defined, which prompted devising practical strategies for engineering plants with enhanced stress tolerance. Vast data have emerged on purposely basic leucine zipper (bZIP), WRKY, homeodomain-leucine zipper (HD-Zip), myeloblastoma (MYB), drought-response elements binding proteins/C-repeat binding factor (DREB/CBF), shine (SHN), and wax production-like (WXPL) TFs that reflect the understanding of their 3D structure and how the structure relates to function. Consequently, this information is useful in the tailored design of variant TFs that enhances our understanding of their functional states, such as oligomerization, post-translational modification patterns, protein-protein interactions, and their abilities to recognize downstream target DNA sequences. Here, we report on the progress of TFs based on their interaction pathway participation in stress-responsive networks, and pinpoint strategies and applications for crops and the impact of these strategies for improving plant stress tolerance.
Collapse
|
11
|
Ried MK, Wild R, Zhu J, Pipercevic J, Sturm K, Broger L, Harmel RK, Abriata LA, Hothorn LA, Fiedler D, Hiller S, Hothorn M. Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis. Nat Commun 2021; 12:384. [PMID: 33452263 PMCID: PMC7810988 DOI: 10.1038/s41467-020-20681-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/09/2020] [Indexed: 12/05/2022] Open
Abstract
Phosphorus is an essential nutrient taken up by organisms in the form of inorganic phosphate (Pi). Eukaryotes have evolved sophisticated Pi sensing and signaling cascades, enabling them to stably maintain cellular Pi concentrations. Pi homeostasis is regulated by inositol pyrophosphate signaling molecules (PP-InsPs), which are sensed by SPX domain-containing proteins. In plants, PP-InsP-bound SPX receptors inactivate Myb coiled-coil (MYB-CC) Pi starvation response transcription factors (PHRs) by an unknown mechanism. Here we report that a InsP8–SPX complex targets the plant-unique CC domain of PHRs. Crystal structures of the CC domain reveal an unusual four-stranded anti-parallel arrangement. Interface mutations in the CC domain yield monomeric PHR1, which is no longer able to bind DNA with high affinity. Mutation of conserved basic residues located at the surface of the CC domain disrupt interaction with the SPX receptor in vitro and in planta, resulting in constitutive Pi starvation responses. Together, our findings suggest that InsP8 regulates plant Pi homeostasis by controlling the oligomeric state and hence the promoter binding capability of PHRs via their SPX receptors. Plants regulate phosphate homeostasis via the interaction of PHR transcription factors with SPX receptors bound to inositol pyrophosphate signaling molecules. Here the authors show that inositol pyrophosphate-bound SPX interacts with the coiled-coil domain of PHR, which regulates the oligomerization and activity of the transcription factor.
Collapse
Affiliation(s)
- Martina K Ried
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.,Leibniz Institute of Plant Biochemistry, 06120, Halle, Germany
| | - Rebekka Wild
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.,Institut de Biologie Structurale (IBS), 38044, Grenoble, France
| | - Jinsheng Zhu
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | | | - Kristina Sturm
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Larissa Broger
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Robert K Harmel
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Luciano A Abriata
- Protein production and structure Core Facility, EPFL, 1015, Lausanne, Switzerland
| | - Ludwig A Hothorn
- Institute of Biostatistics, Leibniz University, 30419, Hannover, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125, Berlin, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | | | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
12
|
Murakami H, Kakutani N, Kuroyanagi Y, Iwai M, Hori K, Shimojima M, Ohta H. MYB-like transcription factor NoPSR1 is crucial for membrane lipid remodeling under phosphate starvation in the oleaginous microalga Nannochloropsis oceanica. FEBS Lett 2020; 594:3384-3394. [PMID: 32770739 DOI: 10.1002/1873-3468.13902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 11/07/2022]
Abstract
Membrane lipid remodeling under phosphate (Pi) limitation, a process that replaces structural membrane phospholipids with nonphosphorus lipids, is a widely observed adaptive response in plants and algae. Here, we identified the transcription factor phosphorus starvation response 1 (NoPSR1) as an indispensable player for regulating membrane lipid conversion during Pi starvation in the microalga Nannochloropsis oceanica. Knocking out NoPSR1 scarcely perturbed membrane lipid composition under Pi-sufficient conditions but significantly impaired dynamic alteration in membrane lipids during Pi starvation. In contrast, the absence of NoPSR1 led to no obvious change in cell proliferation or storage lipid accumulation under either nutrient-sufficient or Pi-deficient conditions. Our results demonstrate a key factor controlling the membrane lipid profile during the Pi starvation response in N. oceanica.
Collapse
Affiliation(s)
- Hiroki Murakami
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Natsue Kakutani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yunato Kuroyanagi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masako Iwai
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Koichi Hori
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Mie Shimojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
13
|
Icard P, Ollivier L, Forgez P, Otz J, Alifano M, Fournel L, Loi M, Thariat J. Perspective: Do Fasting, Caloric Restriction, and Diets Increase Sensitivity to Radiotherapy? A Literature Review. Adv Nutr 2020; 11:1089-1101. [PMID: 32492154 PMCID: PMC7490158 DOI: 10.1093/advances/nmaa062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/11/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Caloric starvation, as well as various diets, has been proposed to increase the oxidative DNA damage induced by radiotherapy (RT). However, some diets could have dual effects, sometimes promoting cancer growth, whereas proposing caloric restriction may appear counterproductive during RT considering that the maintenance of weight is a major factor for the success of this therapy. A systematic review was performed via a PubMed search on RT and fasting, or caloric restriction, ketogenic diet (>75% of fat-derived energy intake), protein starvation, amino acid restriction, as well as the Warburg effect. Twenty-six eligible original articles (17 preclinical studies and 9 clinical noncontrolled studies on low-carbohydrate, high-fat diets popularized as ketogenic diets, representing a total of 77 patients) were included. Preclinical experiments suggest that a short period of fasting prior to radiation, and/or transient caloric restriction during treatment course, can increase tumor responsiveness. These regimens promote accumulation of oxidative lesions and insufficient repair, subsequently leading to cancer cell death. Due to their more flexible metabolism, healthy cells should be less sensitive, shifting their metabolism to support survival and repair. Interestingly, these regimens might stimulate an acute anticancer immune response, and may be of particular interest in tumors with high glucose uptake on positron emission tomography scan, a phenotype associated with poor survival and resistance to RT. Preclinical studies with ketogenic diets yielded more conflicting results, perhaps because cancer cells can sometimes metabolize fatty acids and/or ketone bodies. Randomized trials are awaited to specify the role of each strategy according to the clinical setting, although more stringent definitions of proposed diet, nutritional status, and consensual criteria for tumor response assessment are needed. In conclusion, dietary interventions during RT could be a simple and medically economical and inexpensive method that may deserve to be tested to improve efficiency of radiation.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, Normandie University, UNICAEN, Medical School, CHU de Caen, Caen, France,Inserm U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Centre de Lutte Contre le Cancer, Centre François Baclesse, Caen, France,Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,Address correspondence to PI (e-mail: )
| | - Luc Ollivier
- Centre Hospitalier de Brest, Université de Bretagne Occidentale, Brest, France,Centre François Baclesse, Radiotherapy Unit, Caen, France
| | - Patricia Forgez
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Joelle Otz
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,INSERM U1138, Integrative Cancer Immunology, University Paris Descartes, Paris, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,INSERM U1138, Integrative Cancer Immunology, University Paris Descartes, Paris, France
| | - Mauro Loi
- Department of Radiation Oncology, Paris Est University Hospitals, AP-HP, Paris, France
| | - Juliette Thariat
- Université Caen Normandie, Normandie University, UNICAEN, Medical School, CHU de Caen, Caen, France,Centre François Baclesse, Radiotherapy Unit, Caen, France,Laboratoire de Physique Corpusculaire, IN2P3, Normandie University/UNICAEN/CNRS, Caen, France
| |
Collapse
|
14
|
Wang B, Luo Q, Li Y, Yin L, Zhou N, Li X, Gan J, Dong A. Structural insights into target DNA recognition by R2R3-MYB transcription factors. Nucleic Acids Res 2020; 48:460-471. [PMID: 31733060 PMCID: PMC7145699 DOI: 10.1093/nar/gkz1081] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023] Open
Abstract
As the largest group of MYB family transcription factors, R2R3-MYB proteins play essential roles during plant growth and development. However, the structural basis underlying how R2R3-MYBs recognize the target DNA remains elusive. Here, we report the crystal structure of Arabidopsis WEREWOLF (WER), an R2R3-MYB protein, in complex with its target DNA. Structural analysis showed that the third α-helices in both the R2 and R3 repeats of WER fit in the major groove of the DNA, specifically recognizing the DNA motif 5'-AACNGC-3'. In combination with mutagenesis, in vitro binding and in vivo luciferase assays, we showed that K55, N106, K109 and N110 are critical for the function of WER. Although L59 of WER is not involved in DNA binding in the structure, ITC analysis suggested that L59 plays an important role in sensing DNA methylation at the fifth position of cytosine (5mC). Like 5mC, methylation at the sixth position of adenine (6mA) in the AAC element also inhibits the interaction between WER and its target DNA. Our study not only unravels the molecular basis of how WER recognizes its target DNA, but also suggests that 5mC and 6mA modifications may block the interaction between R2R3-MYB transcription factors and their target genes.
Collapse
Affiliation(s)
- Baihui Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiang Luo
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yingping Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Liufan Yin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Nana Zhou
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiangnan Li
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences; Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianhua Gan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Shanghai Public Health Clinical Center, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
15
|
Sega P, Pacak A. Plant PHR Transcription Factors: Put on A Map. Genes (Basel) 2019; 10:E1018. [PMID: 31817743 PMCID: PMC6947268 DOI: 10.3390/genes10121018] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
The phosphate starvation response (PHR) protein family exhibits the MYB and coiled-coil domains. In plants, within the either 5' untranslated regions (UTRs) or promoter regions of phosphate starvation-induced (PSI) genes are characteristic cis-regulatory elements, namely PHR1 binding sequence (P1BS). The most widely studied PHR protein family members, such as AtPHR1 in Arabidopsis thaliana (L.) and OsPHR2 in Oryza sativa (L.), may activate the gene expression of a broad range of PSI genes by binding to such elements in a phosphate (Pi) dependent manner. In Pi signaling, PHR transcription factors (TFs) can be selectively activated or deactivated by other proteins to execute the final step of signal transduction. Several new proteins have been associated with the AtPHR1/OsPHR2 signaling cascade in the last few years. While the PHR TF transcriptional role has been studied intensively, here we highlight the recent findings of upstream molecular components and other signaling pathways that may interfere with the PHR final mode of action in plants. Detailed information about transcriptional regulation of the AtPHR1 gene itself and its upstream molecular events has been reviewed.
Collapse
Affiliation(s)
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| |
Collapse
|