1
|
Mukherjee S, Lodha TD, Madhuprakash J. Comprehensive Genome Analysis of Cellulose and Xylan-Active CAZymes from the Genus Paenibacillus: Special Emphasis on the Novel Xylanolytic Paenibacillus sp. LS1. Microbiol Spectr 2023; 11:e0502822. [PMID: 37071006 PMCID: PMC10269863 DOI: 10.1128/spectrum.05028-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Abstract
Xylan is the most abundant hemicellulose in hardwood and graminaceous plants. It is a heteropolysaccharide comprising different moieties appended to the xylose units. Complete degradation of xylan requires an arsenal of xylanolytic enzymes that can remove the substitutions and mediate internal hydrolysis of the xylan backbone. Here, we describe the xylan degradation potential and underlying enzyme machinery of the strain, Paenibacillus sp. LS1. The strain LS1 was able to utilize both beechwood and corncob xylan as the sole source of carbon, with the former being the preferred substrate. Genome analysis revealed an extensive xylan-active CAZyme repertoire capable of mediating efficient degradation of the complex polymer. In addition to this, a putative xylooligosaccharide ABC transporter and homologues of the enzymes involved in the xylose isomerase pathway were identified. Further, we have validated the expression of selected xylan-active CAZymes, transporters, and metabolic enzymes during growth of the LS1 on xylan substrates using qRT-PCR. The genome comparison and genomic index (average nucleotide identity [ANI] and digital DNA-DNA hybridization) values revealed that strain LS1 is a novel species of the genus Paenibacillus. Lastly, comparative genome analysis of 238 genomes revealed the prevalence of xylan-active CAZymes over cellulose across the Paenibacillus genus. Taken together, our results indicate that Paenibacillus sp. LS1 is an efficient degrader of xylan polymers, with potential implications in the production of biofuels and other beneficial by-products from lignocellulosic biomass. IMPORTANCE Xylan is the most abundant hemicellulose in the lignocellulosic (plant) biomass that requires cooperative deconstruction by an arsenal of different xylanolytic enzymes to produce xylose and xylooligosaccharides. Microbial (particularly, bacterial) candidates that encode such enzymes are an asset to the biorefineries to mediate efficient and eco-friendly deconstruction of xylan to generate products of value. Although xylan degradation by a few Paenibacillus spp. is reported, a complete genus-wide understanding of the said trait is unavailable till date. Through comparative genome analysis, we showed the prevalence of xylan-active CAZymes across Paenibacillus spp., therefore making them an attractive option towards efficient xylan degradation. Additionally, we deciphered the xylan degradation potential of the strain Paenibacillus sp. LS1 through genome analysis, expression profiling, and biochemical studies. The ability of Paenibacillus sp. LS1 to degrade different xylan types obtained from different plant species, emphasizes its potential implication in lignocellulosic biorefineries.
Collapse
Affiliation(s)
- Saumashish Mukherjee
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | | | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| |
Collapse
|
2
|
Li X, Zhang L, Jiang Z, Liu L, Wang J, Zhong L, Yang T, Zhou Q, Dong W, Zhou J, Ye X, Li Z, Huang Y, Cui Z. A novel cold-active GH8 xylanase from cellulolytic myxobacterium and its application in food industry. Food Chem 2022; 393:133463. [PMID: 35751210 DOI: 10.1016/j.foodchem.2022.133463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
Although xylanase have a wide range of applications, cold-active xylanases have received less attention. In this study, a novel glycoside hydrolase family 8 (GH8) xylanase from Sorangium cellulosum with high activity at low temperatures was identified. The recombinant xylanase (XynSc8) was most active at 50 °C, demonstrating 20% of its maximum activity and strict substrate specificity towards beechwood and corncob xylan at 4 °C with Vmax values of 968.65 and 1521.13 μmol/mg/min, respectively. Mesophilic XynSc8 was active at a broad range of pH and hydrolyzed beechwood and corncob xylan into xylooligosaccharides (XOS) with degree of polymerization greater than 3. Moreover, incorporation of XynSc8 (0.05-0.2 mg/kg flour) provided remarkable improvement (28-30%) in bread specific volume and textural characteristics of bread compared to commercial xylanase. This is the first report on a novel cold-adapted GH8 xylanase from myxobacteria, suggesting that XynSc8 may be a promising candidate suitable for bread making.
Collapse
Affiliation(s)
- Xu Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhitong Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jihong Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Yang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Qin Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Zhong R, Phillips DR, Ye ZH. Independent recruitment of glycosyltransferase family 61 members for xylan substitutions in conifers. PLANTA 2022; 256:70. [PMID: 36068444 DOI: 10.1007/s00425-022-03989-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Several pine members of the gymnosperm-specific GT61 clades were demonstrated to be arabinosyltransferases and xylosyltransferases catalyzing the transfer of 2-O-Araf, 3-O-Araf and 2-O-Xyl side chains onto xylooligomer acceptors, indicating their possible involvement in Araf and Xyl substitutions of xylan in pine. Xylan in conifer wood is substituted at O-2 with methylglucuronic acid (MeGlcA) as well as at O-3 with arabinofuranose (Araf), which differs from xylan in dicot wood that is typically decorated with MeGlcA but not Araf. Currently, glycosyltransferases responsible for conifer xylan arabinosylation have not been identified. Here, we investigated the roles of pine glycosyltransferase family 61 (GT61) members in xylan substitutions. Biochemical characterization of four pine wood-associated GT61 members showed that they exhibited three distinct glycosyltransferase activities involved in xylan substitutions. Two of them catalyzed the addition of 2-O-α-Araf or 3-O-α-Araf side chains onto xylooligomer acceptors and thus were named Pinus taeda xylan 2-O-arabinosyltransferase 1 (PtX2AT1) and 3-O-arabinosyltransferase 1 (PtX3AT1), respectively. Two other pine GT61 members were found to be xylan 2-O-xylosyltransferases (PtXYXTs) adding 2-O-β-Xyl side chains onto xylooligomer acceptors. Furthermore, sequential reactions with PtX3AT1 and the PtGUX1 xylan glucuronyltransferase demonstrated that PtX3AT1 could efficiently arabinosylate glucuronic acid (GlcA)-substituted xylooligomers and likewise, PtGUX1 was able to add GlcA side chains onto 3-O-Araf-substituted xylooligomers. Phylogenetic analysis revealed that PtX2AT1, PtX3AT1 and PtXYXTs resided in three gymnosperm-specific GT61 clades that are separated from the grass-expanded GT61 clade harboring xylan 3-O-arabinosyltransferases and 2-O-xylosyltransferases, suggesting that they might have been recruited independently for xylan substitutions in gymnosperms. Together, our findings have established several pine GT61 members as xylan 2-O- and 3-O-arabinosyltransferases and 2-O-xylosyltransferases and they indicate that pine xylan might also be substituted with 2-O-Araf and 2-O-Xyl side chains.
Collapse
Affiliation(s)
- Ruiqin Zhong
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Dennis R Phillips
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Zheng-Hua Ye
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Le Wang, Zhang XJ, Li YH. A Novel Reducing-end Xylose-releasing Exo-oligoxylanase (PphRex8A) from Paenibacillus physcomitrellae XB. Enzyme Microb Technol 2022; 160:110086. [DOI: 10.1016/j.enzmictec.2022.110086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 11/03/2022]
|
5
|
Kmezik C, Krska D, Mazurkewich S, Larsbrink J. Characterization of a novel multidomain CE15-GH8 enzyme encoded by a polysaccharide utilization locus in the human gut bacterium Bacteroides eggerthii. Sci Rep 2021; 11:17662. [PMID: 34480044 PMCID: PMC8417218 DOI: 10.1038/s41598-021-96659-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteroidetes are efficient degraders of complex carbohydrates, much thanks to their use of polysaccharide utilization loci (PULs). An integral part of PULs are highly specialized carbohydrate-active enzymes, sometimes composed of multiple linked domains with discrete functions—multicatalytic enzymes. We present the biochemical characterization of a multicatalytic enzyme from a large PUL encoded by the gut bacterium Bacteroides eggerthii. The enzyme, BeCE15A-Rex8A, has a rare and novel architecture, with an N-terminal carbohydrate esterase family 15 (CE15) domain and a C-terminal glycoside hydrolase family 8 (GH8) domain. The CE15 domain was identified as a glucuronoyl esterase (GE), though with relatively poor activity on GE model substrates, attributed to key amino acid substitutions in the active site compared to previously studied GEs. The GH8 domain was shown to be a reducing-end xylose-releasing exo-oligoxylanase (Rex), based on having activity on xylooligosaccharides but not on longer xylan chains. The full-length BeCE15A-Rex8A enzyme and the Rex domain were capable of boosting the activity of a commercially available GH11 xylanase on corn cob biomass. Our research adds to the understanding of multicatalytic enzyme architectures and showcases the potential of discovering novel and atypical carbohydrate-active enzymes from mining PULs.
Collapse
Affiliation(s)
- Cathleen Kmezik
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Daniel Krska
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Scott Mazurkewich
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden.,Wallenberg Wood Science Center, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Johan Larsbrink
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden. .,Wallenberg Wood Science Center, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
| |
Collapse
|
6
|
Kadowaki MAS, Briganti L, Evangelista DE, Echevarría-Poza A, Tryfona T, Pellegrini VOA, Nakayama DG, Dupree P, Polikarpov I. Unlocking the structural features for the xylobiohydrolase activity of an unusual GH11 member identified in a compost-derived consortium. Biotechnol Bioeng 2021; 118:4052-4064. [PMID: 34232504 DOI: 10.1002/bit.27880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/08/2022]
Abstract
The heteropolysaccharide xylan is a valuable source of sustainable chemicals and materials from renewable biomass sources. A complete hydrolysis of this major hemicellulose component requires a diverse set of enzymes including endo-β-1,4-xylanases, β-xylosidases, acetylxylan esterases, α-l-arabinofuranosidases, and α-glucuronidases. Notably, the most studied xylanases from glycoside hydrolase family 11 (GH11) have exclusively been endo-β-1,4- and β-1,3-xylanases. However, a recent analysis of a metatranscriptome library from a microbial lignocellulose community revealed GH11 enzymes capable of releasing solely xylobiose from xylan. Although initial biochemical studies clearly indicated their xylobiohydrolase mode of action, the structural features that drive this new activity still remained unclear. It was also not clear whether the enzymes acted on the reducing or nonreducing end of the substrate. Here, we solved the crystal structure of MetXyn11 in the apo and xylobiose-bound forms. The structure of MetXyn11 revealed the molecular features that explain the observed pattern on xylooligosaccharides released by this nonreducing end xylobiohydrolase.
Collapse
Affiliation(s)
- Marco A S Kadowaki
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,PhotoBioCatalysis-Biomass transformation Lab (BTL), École Interfacultaire de Bioingénieurs (EIB), Université Libre de Bruxelles, Brussels, Belgium
| | - Lorenzo Briganti
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Danilo E Evangelista
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,Instituto de Criminalística de Andradina, Superintendência da Polícia Técnico Científica de São Paulo, Andradina, São Paulo, Brazil
| | | | - Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Vanessa O A Pellegrini
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Darlan G Nakayama
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Igor Polikarpov
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
7
|
High-Throughput Generation of Product Profiles for Arabinoxylan-Active Enzymes from Metagenomes. Appl Environ Microbiol 2020; 86:AEM.01505-20. [PMID: 32948521 DOI: 10.1128/aem.01505-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/15/2020] [Indexed: 11/20/2022] Open
Abstract
Metagenomics is an exciting alternative to seek carbohydrate-active enzymes from a range of sources. Typically, metagenomics reveals dozens of putative catalysts that require functional characterization for further application in industrial processes. High-throughput screening methods compatible with adequate natural substrates are crucial for an accurate functional elucidation of substrate preferences. Based on DNA sequencer-aided fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) analysis of enzymatic-reaction products, we generated product profiles to consequently infer substrate cleavage positions, resulting in the generation of enzymatic-degradation maps. Product profiles were produced in high throughput for arabinoxylan (AX)-active enzymes belonging to the glycoside hydrolase families GH43 (subfamilies 2 [MG432], 7 [MG437], and 28 [MG4328]) and GH8 (MG8) starting from 12 (arabino)xylo-oligosaccharides. These enzymes were discovered through functional metagenomic studies of feces from the North American beaver (Castor canadensis). This work shows how enzyme loading alters the product profiles of all enzymes studied and gives insight into AX degradation patterns, revealing sequential substrate preferences of AX-active enzymes.IMPORTANCE Arabinoxylan is mainly found in the hemicellulosic fractions of rice straw, corn cobs, and rice husk. Converting arabinoxylan into (arabino)xylo-oligosaccharides as added-value products that can be applied in food, feed, and cosmetics presents a sustainable and economic alternative for the biorefinery industries. Efficient and profitable AX degradation requires a set of enzymes with particular characteristics. Therefore, enzyme discovery and the study of substrate preferences are of utmost importance. Beavers, as consumers of woody biomass, are a promising source of a repertoire of enzymes able to deconstruct hemicelluloses into soluble oligosaccharides. High-throughput analysis of the oligosaccharide profiles produced by these enzymes will assist in the selection of the most appropriate enzymes for the biorefinery.
Collapse
|