1
|
Jordán-Pla A, Zhang Y, García-Martínez J, Chattopadhyay S, Forte A, Choder M, Pelechano V, Pérez-Ortín JE. Proper 5'-3' cotranslational mRNA decay in yeast requires import of Xrn1 to the nucleus. PLoS One 2025; 20:e0308195. [PMID: 39841709 PMCID: PMC11753706 DOI: 10.1371/journal.pone.0308195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025] Open
Abstract
The budding yeast Xrn1 protein shuttles between the nucleus, where it stimulates transcription, and the cytoplasm, where it executes the major cytoplasmic mRNA decay. In the cytoplasm, apart from catalyzing 5'→3' decay onto non translated mRNAs, Xrn1 can follow the last translating ribosome to degrade the decapped mRNA template, a process known as "cotranslational mRNA decay". We have previously observed that the import of Xrn1 to the nucleus is required for efficient cytoplasmic mRNA decay. Here by using an Xrn1 mutant that cannot enter the nucleus, but is otherwise functional in ribonuclease activity, we show that nuclear import is necessary for proper global cotranslational decay of mRNAs along coding regions and also affects degradation in the of 5' region of a large group of mRNAs, which comprise about 20% of the transcriptome. Furthermore, a principal component analysis of the genomic datasets of this mutant and other Xrn1 mutants also shows that lack of a cytoplasmic 5'→3' exoribonuclease is the primary cause of the physiological defects seen in a xrn1Δ mutant, but also suggests that Xrn1 import into the nucleus is necessary for its full in vivo functions.
Collapse
Affiliation(s)
- Antonio Jordán-Pla
- Facultad de Biológicas, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Yujie Zhang
- Department of Microbiology, SciLifeLab, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - José García-Martínez
- Facultad de Biológicas, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Shiladitya Chattopadhyay
- Rappaport Faculty of Medicine, Department of Molecular Microbiology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Anabel Forte
- Facultad de Matemáticas, Departamento de Estadística e Investigación Operativa, Universitat de València, Burjassot, Spain
| | - Mordechai Choder
- Rappaport Faculty of Medicine, Department of Molecular Microbiology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Vicent Pelechano
- Department of Microbiology, SciLifeLab, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - José E. Pérez-Ortín
- Facultad de Biológicas, Instituto de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
- Department of Microbiology, SciLifeLab, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
2
|
Pérez-Ortín JE, Jordán-Pla A, Zhang Y, Moreno-García J, Bassot C, Barba-Aliaga M, de Campos-Mata L, Choder M, Díez J, Piazza I, Pelechano V, García-Martínez J. Comparison of Xrn1 and Rat1 5' → 3' exoribonucleases in budding yeast supports the specific role of Xrn1 in cotranslational mRNA decay. Yeast 2024; 41:458-472. [PMID: 38874348 DOI: 10.1002/yea.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024] Open
Abstract
The yeast Saccharomyces cerevisiae and most eukaryotes carry two 5' → 3' exoribonuclease paralogs. In yeast, they are called Xrn1, which shuttles between the nucleus and the cytoplasm, and executes major cytoplasmic messenger RNA (mRNA) decay, and Rat1, which carries a strong nuclear localization sequence (NLS) and localizes to the nucleus. Xrn1 is 30% identical to Rat1 but has an extra ~500 amino acids C-terminal extension. In the cytoplasm, Xrn1 can degrade decapped mRNAs during the last round of translation by ribosomes, a process referred to as "cotranslational mRNA decay." The division of labor between the two enzymes is still enigmatic and serves as a paradigm for the subfunctionalization of many other paralogs. Here we show that Rat1 is capable of functioning in cytoplasmic mRNA decay, provided that Rat1 remains cytoplasmic due to its NLS disruption (cRat1). This indicates that the physical segregation of the two paralogs plays roles in their specific functions. However, reversing segregation is not sufficient to fully complement the Xrn1 function. Specifically, cRat1 can partially restore the cell volume, mRNA stability, the proliferation rate, and 5' → 3' decay alterations that characterize xrn1Δ cells. Nevertheless, cotranslational decay is only slightly complemented by cRat1. The use of the AlphaFold prediction for cRat1 and its subsequent docking with the ribosome complex and the sequence conservation between cRat1 and Xrn1 suggest that the tight interaction with the ribosome observed for Xrn1 is not maintained in cRat1. Adding the Xrn1 C-terminal domain to Rat1 does not improve phenotypes, which indicates that lack of the C-terminal is not responsible for partial complementation. Overall, during evolution, it appears that the two paralogs have acquired specific characteristics to make functional partitioning beneficial.
Collapse
Affiliation(s)
- José E Pérez-Ortín
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, Burjassot, Spain
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Antonio Jordán-Pla
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, Burjassot, Spain
| | - Yujie Zhang
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - Jorge Moreno-García
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, Burjassot, Spain
| | - Claudio Bassot
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany
| | - Marina Barba-Aliaga
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, Burjassot, Spain
| | - Leire de Campos-Mata
- Virology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mordechai Choder
- Department of Molecular Microbiology, Technion-Israel Institute of Technology, Rappaport Faculty of Medicine, Haifa, Israel
| | - Juana Díez
- Virology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ilaria Piazza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC Berlin), Berlin, Germany
| | - Vicent Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - José García-Martínez
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Facultad de Biológicas, Universitat de València, Burjassot, Spain
| |
Collapse
|
3
|
Kikuta H, Aramaki T, Mabu S, Akada R, Hoshida H. The presence of an intron relieves gene repression caused by promoter-proximal four-bp specific sequences in yeast. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194982. [PMID: 37659722 DOI: 10.1016/j.bbagrm.2023.194982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023]
Abstract
Introns can enhance gene expression in eukaryotic cells in a process called intron-mediated enhancement (IME). The levels of enhancement are affected not only by the intron sequence but also by coding sequences (CDSs). However, the parts of CDSs responsible for mediating IME have not yet been identified. In this study, we identified an IME-mediating sequence by analyzing three pairs of IME-sensitive and -insensitive CDSs in Saccharomyces cerevisiae. Expression of the CDSs yCLuc, yRoGLU1, and KmBGA1 was enhanced by the presence of an intron (i.e., they were IME sensitive), but the expression of each corresponding codon-changed CDS, which encoded the identical amino acid sequence, was not enhanced (i.e., they were IME insensitive). Interestingly, the IME-insensitive CDSs showed higher expression levels that were like intron-enhanced expression of IME-sensitive CDSs, suggesting that expression of IME-sensitive CDSs was repressed. A four-nucleotide sequence (TCTT) located in the promoter-proximal position of either the untranslated or coding region was found to be responsible for repression in IME-sensitive CDSs, and repression caused by the TCTT sequence was relieved by the presence of an intron. Further, it was found that the expression of intron-containing yeast-native genes, UBC4 and MPT5, was repressed by TCTT in the CDS but relieved by the introns. These results indicate that TCTT sequences in promoter-proximal positions repress gene expression and that introns play a role in relieving gene repression caused by sequences such as TCTT.
Collapse
Affiliation(s)
- Hiroki Kikuta
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Takahiro Aramaki
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Shingo Mabu
- Division of Electrical, Electronic and Information Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Rinji Akada
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8315, Japan; Yamaguchi University Biomedical Engineering Center, 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | - Hisashi Hoshida
- Division of Applied Chemistry, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8315, Japan; Yamaguchi University Biomedical Engineering Center, 2-16-1 Tokiwadai, Ube 755-8611, Japan.
| |
Collapse
|
4
|
Glutamine increases stability of TPH1 mRNA via p38 mitogen-activated kinase in mouse mastocytoma cells. Mol Biol Rep 2023; 50:267-277. [PMID: 36331742 PMCID: PMC9884262 DOI: 10.1007/s11033-022-07693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
Expression changes for tryptophan hydroxylase 1 (TPH1), the rate-limiting enzyme in serotonin synthesis, by environmental glutamine (GLN) were examined in mouse mastocytoma-derived P815-HTR cells. GLN-treated cells exhibited a robust increase in TPH1 mRNA after a 6 h exposure to GLN. 6-Diazo-5-oxo-L-norleucine (DON), a glutamine-utilizing glutaminase inhibitor, significantly inhibited the GLN-induction of TPH1 mRNA. Nuclear run-on assays and mRNA decay experiments demonstrated that the primary mechanism leading to increased TPH1 mRNA levels was not due to transcriptional changes, but rather due to increased TPH1 RNA stability induced by GLN. Treatment with GLN also led to activation of p38 MAP kinase, but not p42/44 MAPK. In addition, SB203580, a p38 MAP kinase specific inhibitor, completely abolished the GLN-mediated increase of TPH1 mRNA levels, suggesting the pathway stabilizing TPH1 mRNA might be mediated by the activated p38 MAP kinase pathway. Additionally, SB203580 significantly reduced the stability of TPH1 mRNA, and this reduction of the stability was not affected by GLN in the culture medium, implying a sequential signaling from GLN being mediated by p38 MAP kinase, resulting in alteration of TPH1 mRNA stability. TPH1 mRNA stability loss was also dependent on de novo protein synthesis as shown by treatment of cells with a transcriptional/translational blocker. We provide evidence that TPH1 mRNA levels are increased in response to increased exogenous GLN in mouse mastocytoma cells via a stabilization of TPH1 mRNA due to the activity of the p38 MAP kinase.
Collapse
|
5
|
Ruiz-Conca M, Gardela J, Olvera-Maneu S, López-Béjar M, Álvarez-Rodríguez M. NR3C1 and glucocorticoid-regulatory genes mRNA and protein expression in the endometrium and ampulla during the bovine estrous cycle. Res Vet Sci 2022; 152:510-523. [PMID: 36174371 DOI: 10.1016/j.rvsc.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/08/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
The bovine reproductive tract exhibits changes during the estrous cycle modulated by the interplay of steroid hormones. Glucocorticoids can be detrimental when stress-induced but are relevant at baseline levels for appropriate reproductive function. Here, an analysis of quantitative real-time PCR was performed to study the bovine glucocorticoid-related baseline gene transcription in endometrial and ampullar tissue samples derived from three time points of the estrous cycle, stage I (Days 1-4), stage III (Days 11-17) and stage IV (Days 18-20). Our results revealed expression differences during stages, as expression observed in the ampulla was higher during the post-ovulatory phase (stage I), including the glucocorticoid receptor NR3C1, and some of its regulators, involved in glucocorticoid availability (HSD11B1 and HSD11B2) and transcriptional actions (FKBP4 and FKBP5). In contrast, in the endometrium, higher expression of the steroid receptors was observed during the late luteal phase (stage III), including ESR1, ESR2, PGRMC1 and PGRMC2, and HSD11B1 expression decreased, while HSD11B2 increased. Moreover, at protein level, FKBP4 was higher expressed during the late luteal phase, and NR3C1 during the pre-ovulatory phase (stage IV). These results suggest that tight regulation of the glucocorticoid activity is promoted in the ampulla, when reproductive events are taking place, including oocyte maturation. Moreover, most expression changes in the endometrium were observed during the late luteal phase, and may be related to the embryonic maternal recognition. In conclusion, the glucocorticoid regulation changes across the estrous cycle and may be playing a role on the reproductive events occurring in the bovine ampulla and endometrium.
Collapse
Affiliation(s)
- Mateo Ruiz-Conca
- Division of Children's and Women Health (BKH), Department of Biomedical and Clinical Sciences (BKV), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jaume Gardela
- Division of Children's and Women Health (BKH), Department of Biomedical and Clinical Sciences (BKV), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Sergi Olvera-Maneu
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Manuel Álvarez-Rodríguez
- Division of Children's and Women Health (BKH), Department of Biomedical and Clinical Sciences (BKV), Obstetrics and Gynecology, Linköping University, 58185 Linköping, Sweden; Department of Animal Health and Anatomy, Faculty of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|