1
|
Anand S, Bandyopadhyay S, Ravindra Bhoge P, Toraskar S, Kalia J, Kikkeri R. Activation of the Voltage-Gated Potassium Channel by Amphiphilic Glycopeptides. Chemistry 2025; 31:e202403943. [PMID: 39836913 DOI: 10.1002/chem.202403943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/23/2025]
Abstract
Voltage-gated ion channels (VGICs) are allosterically modulated by glycosaminoglycan proteoglycans and sialic acid glycans. However, the structural diversity and heterogeneity of these biomolecules pose significant challenges to precisely delineate their underlying structure-activity relationships. Herein, we demonstrate how heparan sulfate (HS) and sialic acid synthetic glycans appended on amphiphilic glycopeptide backbone influence cell membrane persistence and modulate the gating of the Kv2.1 channel. Utilizing a panel of amphiphilic glycopeptides comprising HS disaccharides and sialic acid trisaccharide glycans, we observed that sulfation of HS and flexible α(2-6) sialylation result in prolonged persistence of glycopeptides on the cell membrane compared to non-sulfated HS and α(2-3) sialylation respective. This variation in glycocalyx composition was associated with a noticeable difference in the effects of these compounds on the activation and deactivation properties of the voltage-gated Kv2.1 channel with our strongest membrane associating compound demonstrating the most potent channel-activation propensity. Our findings demonstrate that sulfation charges on glycopeptide play a critical role in their membrane association propensities and endow them with VGIC activation properties. These results provide a valuable insight into the role of cell surface glycans in VGIC activities.
Collapse
Affiliation(s)
- Saurabh Anand
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, India
| | - Sucheta Bandyopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research, Madhya Pradesh, Bhopal, 462066, India
| | - Preeti Ravindra Bhoge
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, India
| | - Suraj Toraskar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, India
| | - Jeet Kalia
- Department of Biological Sciences, Indian Institute of Science Education and Research, Madhya Pradesh, Bhopal, 462066, India
- Department of Chemistry, Indian Institute of Science Education and Research, Madhya Pradesh, Bhopal, 462066, India
| | - Raghavendra Kikkeri
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, India
- Department of CPAS, Jackson State University, Jackson, MS, 39217, USA
| |
Collapse
|
2
|
Pethő Z, Pajtás D, Piga M, Magyar Z, Zakany F, Kovacs T, Zidar N, Panyi G, Varga Z, Papp F. A synthetic flavonoid derivate in the plasma membrane transforms the voltage-clamp fluorometry signal of CiHv1. FEBS J 2024; 291:2354-2371. [PMID: 38431775 DOI: 10.1111/febs.17105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/28/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Voltage-clamp fluorometry (VCF) enables the study of voltage-sensitive proteins through fluorescent labeling accompanied by ionic current measurements for voltage-gated ion channels. The heterogeneity of the fluorescent signal represents a significant challenge in VCF. The VCF signal depends on where the cysteine mutation is incorporated, making it difficult to compare data among different mutations and different studies and standardize their interpretation. We have recently shown that the VCF signal originates from quenching amino acids in the vicinity of the attached fluorophores, together with the effect of the lipid microenvironment. Based on these, we performed experiments to test the hypothesis that the VCF signal could be altered by amphiphilic quenching molecules in the cell membrane. Here we show that a phenylalanine-conjugated flavonoid (4-oxo-2-phenyl-4H-chromene-7-yl)-phenylalanine, (later Oxophench) has potent effects on the VCF signals of the Ciona intestinalis HV1 (CiHv1) proton channel. Using spectrofluorimetry, we showed that Oxophench quenches TAMRA (5(6)-carboxytetramethylrhodamine-(methane thiosulfonate)) fluorescence. Moreover, Oxophench reduces the baseline fluorescence in oocytes and incorporates into the cell membrane while reducing the membrane fluidity of HEK293 cells. Our model calculations confirmed that Oxophench, a potent membrane-bound quencher, modifies the VCF signal during conformational changes. These results support our previously published model of VCF signal generation and point out that a change in the VCF signal may not necessarily indicate an altered conformational transition of the investigated protein.
Collapse
Affiliation(s)
- Zoltán Pethő
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
- Institut für Physiologie II, University of Münster, Germany
| | - Dávid Pajtás
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Martina Piga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia
| | - Zsuzsanna Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Nace Zidar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Slovenia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Ferenc Papp
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
3
|
Zhao C, Webster PD, De Angeli A, Tombola F. Mechanically-primed voltage-gated proton channels from angiosperm plants. Nat Commun 2023; 14:7515. [PMID: 37980353 PMCID: PMC10657467 DOI: 10.1038/s41467-023-43280-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
Voltage-gated and mechanically-gated ion channels are distinct classes of membrane proteins that conduct ions across gated pores and are turned on by electrical or mechanical stimuli, respectively. Here, we describe an Hv channel (a.k.a voltage-dependent H+ channel) from the angiosperm plant A. thaliana that gates with a unique modality as it is turned on by an electrical stimulus only after exposure to a mechanical stimulus, a process that we call priming. The channel localizes in the vascular tissue and has homologs in vascular plants. We find that mechanical priming is not required for activation of non-angiosperm Hvs. Guided by AI-generated structural models of plant Hv homologs, we identify a set of residues playing a crucial role in mechanical priming. We propose that Hvs from angiosperm plants require priming because of a network of hydrophilic/charged residues that locks the channels in a silent resting conformation. Mechanical stimuli destabilize the network allowing the conduction pathway to turn on. In contrast to many other channels and receptors, Hv proteins are not thought to possess mechanisms such as inactivation or desensitization. Our findings demonstrate that angiosperm Hv channels are electrically silent until a mechanical stimulation turns on their voltage-dependent activity.
Collapse
Affiliation(s)
- Chang Zhao
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Parker D Webster
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA
| | - Alexis De Angeli
- IPSiM, University of Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| | - Francesco Tombola
- Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Marques LP, Santos-Miranda A, Joviano-Santos JV, Teixeira-Fonseca JL, Alcântara FDS, Sarmento JO, Roman-Campos D. The fungicide tebuconazole modulates the sodium current of human Na V1.5 channels expressed in HEK293 cells. Food Chem Toxicol 2023; 180:113992. [PMID: 37633639 DOI: 10.1016/j.fct.2023.113992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
The fungicide Tebuconazole is a widely used pesticide in agriculture and may cause cardiotoxicity. In our present investigation the effect of Tebuconazole on the sodium current (INa) of human cardiac sodium channels (NaV1.5) was studied using a heterologous expression system and whole-cell patch-clamp techniques. Tebuconazole reduced the amplitude of the peak INa in a concentration- and voltage-dependent manner. At the holding potential of -120 mV the IC50 was estimated at 204.1 ± 34.3 μM, while at -80 mV the IC50 was 0.3 ± 0.1 μM. The effect of the fungicide is more pronounced at more depolarized potentials, indicating a state-dependent interaction. Tebuconazole caused a negative shift in the half-maximal inactivation voltage and delayed recovery from fast inactivation of INa. Also, it enhanced closed-state inactivation, exhibited use-dependent block in a voltage-dependent manner. Furthermore, Tebuconazole reduced the increase in late sodium current induced by the pyrethroid insecticide β-Cyfluthrin. These results suggest that Tebuconazole can interact with NaV1.5 channels and modulate INa. The observed effects may lead to decreased cardiac excitability through reduced INa availability, which could be a new mechanism of cardiotoxicity to be attributed to the fungicide.
Collapse
Affiliation(s)
- Leisiane Pereira Marques
- Laboratory of Cardiobiology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Artur Santos-Miranda
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Jorge Lucas Teixeira-Fonseca
- Laboratory of Cardiobiology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fabiana da Silva Alcântara
- Laboratory of Cardiobiology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Jaqueline Oliveira Sarmento
- Laboratory of Cardiobiology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Danilo Roman-Campos
- Laboratory of Cardiobiology, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|