1
|
Tserennadmid B, Nam MK, Park JH, Rhim H, Kang S. HAP/ClpP-mediated disaggregation and degradation of Mutant SOD1 aggregates: A potential therapeutic strategy for Amyotrophic lateral sclerosis (ALS). Biochem Biophys Res Commun 2025; 756:151533. [PMID: 40054065 DOI: 10.1016/j.bbrc.2025.151533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/31/2025] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease marked by the accumulation of misfolded Cu/Zn superoxide dismutase (SOD1) protein aggregates in motor neurons, leading to progressive motor dysfunction and ultimately death. While the molecular chaperone heat shock protein 104 (Hsp104) has been shown to reduce protein misfolding by disaggregating protein aggregates, fully degrading these disaggregated proteins remains a significant challenge. In this study, we have investigated the effects of Hsp104 and its hyperactive variant, HAP, in combination with caseinolytic protease P (CIpP), on the disaggregation and degradation of SOD1 aggregates. Using laser confocal microscopy, fluorescence loss in photobleaching (FLIP), and biomolecular fluorescence complementation (BiFC)-fluorescence resonance energy transfer (FRET) assays, we demonstrate that Hsp104 effectively disaggregates SOD1 aggregates across 14 different G93 mutants, classified based on the properties of substituted amino acids, thus restoring protein mobility. Notably, the HAP/CIpP system not only disaggregates ALS-associated SOD1G93A aggregates but also promotes their proteolytic degradation, as evidenced by a significant reduction in high-order oligomers observed through BiFC and FRET assays. This dual mechanism of action presents. the HAP/CIpP system holds significant therapeutic potential for ALS and other neurodegenerative diseases characterized by protein aggregates, as it enables both effective disaggregation and degradation of toxic protein aggregates, thereby maintaining protein homeostasis.
Collapse
Affiliation(s)
- Battur Tserennadmid
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min-Kyung Nam
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Ju-Hwang Park
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hyangshuk Rhim
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea.
| | - Seongman Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
2
|
Temelli N, van den Akker S, Weusthuis RA, Bisschops MMM. Exploring Yeast's Energy Dynamics: The General Stress Response Lowers Maintenance Energy Requirement. Microb Biotechnol 2025; 18:e70126. [PMID: 40181231 PMCID: PMC11968331 DOI: 10.1111/1751-7915.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/11/2025] [Accepted: 02/23/2025] [Indexed: 04/05/2025] Open
Abstract
In many microbial biotechnology processes, biomass itself is not the product of interest, but rather targeted chemicals or proteins. In these processes, growth should be limited to direct more substrate to product and increase process yields. Under growth-limiting conditions, such as nutrient limitation, microorganisms, including the yeast Saccharomyces cerevisiae, activate a general stress response (GSR). Different hypotheses have been formulated for this activation, including a preparatory role for future stresses or a role in cellular protein density. Here we tested a third hypothesis: the GSR reduces the energy needed to maintain cellular homeostasis, also known as the maintenance energy requirement (MER). The impact of GSR on MER was investigated by assessing the effect of the absence of its key regulators, Msn2 and Msn4, on energy-substrate distribution and stress resistance. Chemostat and fed-batch cultures revealed significant increases in MER of up to 85% in the deletion strain compared to the parental strain. In contrast, maximal biomass yields, growth rates and morphology were unaffected. Our insights highlight an additional role of the GSR, namely saving cellular energy. As the MER is a key determinant of product yields and in process design, especially in low growth processes, our findings can help to optimise microbial bioprocesses.
Collapse
Affiliation(s)
- Nuran Temelli
- Bioprocess EngineeringWageningen UniversityWageningenthe Netherlands
| | | | - Ruud A. Weusthuis
- Bioprocess EngineeringWageningen UniversityWageningenthe Netherlands
| | | |
Collapse
|
3
|
Annis MY, Ravenburg CM, van Wijk KJ. Uvr motifs regulate the chloroplast Clp chaperone-protease system. TRENDS IN PLANT SCIENCE 2025; 30:269-282. [PMID: 39448301 DOI: 10.1016/j.tplants.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
Chloroplast proteostasis relies on diverse proteases, including the essential Clp chaperone-protease system. Two chloroplast ClpC AAA+ chaperones and the plant-specific adaptor ClpF contain an Uvr motif with predicted coiled-coiled structures implicated in protein-protein interactions. Head-to-head contacts between Uvr motifs in middle (M)-domains regulate the oligomerization and activation of several bacterial Clp chaperones. Interestingly, in arabidopsis (Arabidopsis thaliana), this Uvr motif is found in six additional chloroplast proteins (Executer1, Executer2, and Uvr1-4). Here, we first summarize evidence that Uvr motifs regulate proteostasis in bacteria. Based on this evidence and recent results in arabidopsis, we postulate that arabidopsis Uvr motif proteins regulate chloroplast Clp proteolysis. We propose specific working hypotheses to test the function of the Uvr motif in chloroplast proteostasis.
Collapse
Affiliation(s)
- Marissa Y Annis
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Claire M Ravenburg
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Wu H, Wang LC, Sow BM, Leow D, Zhu J, Gallo KM, Wilsbach K, Gupta R, Ostrow LW, Yeo CJJ, Sobota RM, Li R. TDP43 aggregation at ER-exit sites impairs ER-to-Golgi transport. Nat Commun 2024; 15:9026. [PMID: 39424779 PMCID: PMC11489672 DOI: 10.1038/s41467-024-52706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/18/2024] [Indexed: 10/21/2024] Open
Abstract
Protein aggregation plays key roles in age-related degenerative diseases, but how different proteins coalesce to form inclusions that vary in composition, morphology, molecular dynamics and confer physiological consequences is poorly understood. Here we employ a general reporter based on mutant Hsp104 to identify proteins forming aggregates in human cells under common proteotoxic stress. We identify over 300 proteins that form different inclusions containing subsets of aggregating proteins. In particular, TDP43, implicated in Amyotrophic Lateral Sclerosis (ALS), partitions dynamically between two distinct types of aggregates: stress granule and a previously unknown non-dynamic (solid-like) inclusion at the ER exit sites (ERES). TDP43-ERES co-aggregation is induced by diverse proteotoxic stresses and observed in the motor neurons of ALS patients. Such aggregation causes retention of secretory cargos at ERES and therefore delays ER-to-Golgi transport, providing a link between TDP43 aggregation and compromised cellular function in ALS patients.
Collapse
Affiliation(s)
- Hongyi Wu
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Loo Chien Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Belle M Sow
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Damien Leow
- Department of Anatomy, Yong Loo-Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jin Zhu
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Kathryn M Gallo
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kathleen Wilsbach
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Roshni Gupta
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore
| | - Lyle W Ostrow
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Crystal J J Yeo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- National Neuroscience Institute, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, UK
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore (NUS), Singapore, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Barrientos ECR, Otto TA, Mouton SN, Steen A, Veenhoff LM. A survey of the specificity and mechanism of 1,6 hexanediol-induced disruption of nuclear transport. Nucleus 2023; 14:2240139. [PMID: 37498221 PMCID: PMC10376917 DOI: 10.1080/19491034.2023.2240139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
Selective transport through the nuclear pore complex (NPC) depends on the dynamic binding of FG-repeat containing nucleoporins, the FG-nups, with each other and with Karyopherins (Kaps). Here, we assessed the specificity and mechanism by which the aliphatic alcohol 1,6-hexanediol (1,6HD) disrupts the permeability barrier of NPCs in live baker's yeast cells. After a 10-minute exposure to 5% 1,6HD, no notable changes were observed in cell growth, cytosolic pH and ATP levels, or the appearance of organelles. However, effects on the cytoskeleton and Hsp104 were noted. 1,6HD clearly affected the NPC permeability barrier, allowing passive nuclear entry of a 177kDa reporter protein that is normally confined to the cytosol. Moreover, multiple Kaps were displaced from NPCs, and the displacement of Kap122-GFP correlated with the observed passive permeability changes. 1,6HD thus temporarily permeates NPCs, and in line with Kap-centric models, the mechanism includes the release of numerous Kaps from the NPCs.
Collapse
Affiliation(s)
- Elizabeth C Riquelme Barrientos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Groningen, The Netherlands
| | - Tegan A Otto
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Groningen, The Netherlands
| | - Sara N Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Groningen, The Netherlands
| | - Anton Steen
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Groningen, The Netherlands
| | - Liesbeth M Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Katikaridis P, Simon B, Jenne T, Moon S, Lee C, Hennig J, Mogk A. Structural basis of aggregate binding by the AAA+ disaggregase ClpG. J Biol Chem 2023; 299:105336. [PMID: 37827289 PMCID: PMC10641755 DOI: 10.1016/j.jbc.2023.105336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Severe heat stress causes massive loss of essential proteins by aggregation, necessitating a cellular activity that rescues aggregated proteins. This activity is executed by ATP-dependent, ring-forming, hexameric AAA+ disaggregases. Little is known about the recognition principles of stress-induced protein aggregates. How can disaggregases specifically target aggregated proteins, while avoiding binding to soluble non-native proteins? Here, we determined by NMR spectroscopy the core structure of the aggregate-targeting N1 domain of the bacterial AAA+ disaggregase ClpG, which confers extreme heat resistance to bacteria. N1 harbors a Zn2+-coordination site that is crucial for structural integrity and disaggregase functionality. We found that conserved hydrophobic N1 residues located on a β-strand are crucial for aggregate targeting and disaggregation activity. Analysis of mixed hexamers consisting of full-length and N1-truncated subunits revealed that a minimal number of four N1 domains must be present in a AAA+ ring for high-disaggregation activity. We suggest that multiple N1 domains increase substrate affinity through avidity effects. These findings define the recognition principle of a protein aggregate by a disaggregase, involving simultaneous contacts with multiple hydrophobic substrate patches located in close vicinity on an aggregate surface. This binding mode ensures selectivity for aggregated proteins while sparing soluble, non-native protein structures from disaggregase activity.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, Germany; Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Timo Jenne
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Seongjoon Moon
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, Germany; Division of Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany.
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
7
|
Ghosh S, Tugarinov V, Clore GM. Quantitative NMR analysis of the mechanism and kinetics of chaperone Hsp104 action on amyloid-β42 aggregation and fibril formation. Proc Natl Acad Sci U S A 2023; 120:e2305823120. [PMID: 37186848 PMCID: PMC10214214 DOI: 10.1073/pnas.2305823120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
The chaperone Hsp104, a member of the Hsp100/Clp family of translocases, prevents fibril formation of a variety of amyloidogenic peptides in a paradoxically substoichiometric manner. To understand the mechanism whereby Hsp104 inhibits fibril formation, we probed the interaction of Hsp104 with the Alzheimer's amyloid-β42 (Aβ42) peptide using a variety of biophysical techniques. Hsp104 is highly effective at suppressing the formation of Thioflavin T (ThT) reactive mature fibrils that are readily observed by atomic force (AFM) and electron (EM) microscopies. Quantitative kinetic analysis and global fitting was performed on serially recorded 1H-15N correlation spectra to monitor the disappearance of Aβ42 monomers during the course of aggregation over a wide range of Hsp104 concentrations. Under the conditions employed (50 μM Aβ42 at 20 °C), Aβ42 aggregation occurs by a branching mechanism: an irreversible on-pathway leading to mature fibrils that entails primary and secondary nucleation and saturating elongation; and a reversible off-pathway to form nonfibrillar oligomers, unreactive to ThT and too large to be observed directly by NMR, but too small to be visualized by AFM or EM. Hsp104 binds reversibly with nanomolar affinity to sparsely populated Aβ42 nuclei present in nanomolar concentrations, generated by primary and secondary nucleation, thereby completely inhibiting on-pathway fibril formation at substoichiometric ratios of Hsp104 to Aβ42 monomers. Tight binding to sparsely populated nuclei likely constitutes a general mechanism for substoichiometric inhibition of fibrillization by a variety of chaperones. Hsp104 also impacts off-pathway oligomerization but to a much smaller degree initially reducing and then increasing the rate of off-pathway oligomerization.
Collapse
Affiliation(s)
- Shreya Ghosh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| |
Collapse
|
8
|
Hoi DM, Junker S, Junk L, Schwechel K, Fischel K, Podlesainski D, Hawkins PME, van Geelen L, Kaschani F, Leodolter J, Morreale FE, Kleine S, Guha S, Rumpel K, Schmiedel VM, Weinstabl H, Meinhart A, Payne RJ, Kaiser M, Hartl M, Boehmelt G, Kazmaier U, Kalscheuer R, Clausen T. Clp-targeting BacPROTACs impair mycobacterial proteostasis and survival. Cell 2023; 186:2176-2192.e22. [PMID: 37137307 DOI: 10.1016/j.cell.2023.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/24/2023] [Accepted: 04/05/2023] [Indexed: 05/05/2023]
Abstract
The ClpC1:ClpP1P2 protease is a core component of the proteostasis system in mycobacteria. To improve the efficacy of antitubercular agents targeting the Clp protease, we characterized the mechanism of the antibiotics cyclomarin A and ecumicin. Quantitative proteomics revealed that the antibiotics cause massive proteome imbalances, including upregulation of two unannotated yet conserved stress response factors, ClpC2 and ClpC3. These proteins likely protect the Clp protease from excessive amounts of misfolded proteins or from cyclomarin A, which we show to mimic damaged proteins. To overcome the Clp security system, we developed a BacPROTAC that induces degradation of ClpC1 together with its ClpC2 caretaker. The dual Clp degrader, built from linked cyclomarin A heads, was highly efficient in killing pathogenic Mycobacterium tuberculosis, with >100-fold increased potency over the parent antibiotic. Together, our data reveal Clp scavenger proteins as important proteostasis safeguards and highlight the potential of BacPROTACs as future antibiotics.
Collapse
Affiliation(s)
- David M Hoi
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria; Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department for Biochemistry and Cell Biology, 1030 Vienna, Austria
| | - Sabryna Junker
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | - Lukas Junk
- Saarland University, Organic Chemistry I, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany.
| | - Kristin Schwechel
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | | | - David Podlesainski
- University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology, 45141 Essen, Germany
| | - Paige M E Hawkins
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia
| | - Lasse van Geelen
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Farnusch Kaschani
- University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology, 45141 Essen, Germany
| | - Julia Leodolter
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | | | - Stefan Kleine
- University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology, 45141 Essen, Germany
| | - Somraj Guha
- Saarland University, Organic Chemistry I, 66123 Saarbrücken, Germany
| | - Klaus Rumpel
- Boehringer Ingelheim RCV GmbH & Co KG, 1120 Vienna, Austria
| | | | | | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria
| | - Richard J Payne
- School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia
| | - Markus Kaiser
- University of Duisburg-Essen, Center of Medical Biotechnology, Faculty of Biology, 45141 Essen, Germany
| | - Markus Hartl
- Max Perutz Labs, Vienna BioCenter, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department for Biochemistry and Cell Biology, 1030 Vienna, Austria
| | - Guido Boehmelt
- Boehringer Ingelheim RCV GmbH & Co KG, 1120 Vienna, Austria
| | - Uli Kazmaier
- Saarland University, Organic Chemistry I, 66123 Saarbrücken, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), 66123 Saarbrücken, Germany
| | - Rainer Kalscheuer
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna BioCenter, 1030 Vienna, Austria; Medical University of Vienna, 1030 Vienna, Austria.
| |
Collapse
|
9
|
Zhao X, Stanford K, Ahearn J, Masison DC, Greene LE. Hsp70 Binding to the N-terminal Domain of Hsp104 Regulates [ PSI+] Curing by Hsp104 Overexpression. Mol Cell Biol 2023; 43:157-173. [PMID: 37099734 PMCID: PMC10153015 DOI: 10.1080/10985549.2023.2198181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 04/28/2023] Open
Abstract
Hsp104 propagates the yeast prion [PSI+], the infectious form of Sup35, by severing the prion seeds, but when Hsp104 is overexpressed, it cures [PSI+] in a process that is not yet understood but may be caused by trimming, which removes monomers from the ends of the amyloid fibers. This curing was shown to depend on both the N-terminal domain of Hsp104 and the expression level of various members of the Hsp70 family, which raises the question as to whether these effects of Hsp70 are due to it binding to the Hsp70 binding site that was identified in the N-terminal domain of Hsp104, a site not involved in prion propagation. Investigating this question, we now find, first, that mutating this site prevents both the curing of [PSI+] by Hsp104 overexpression and the trimming activity of Hsp104. Second, we find that depending on the specific member of the Hsp70 family binding to the N-terminal domain of Hsp104, both trimming and the curing caused by Hsp104 overexpression are either increased or decreased in parallel. Therefore, the binding of Hsp70 to the N-terminal domain of Hsp104 regulates both the rate of [PSI+] trimming by Hsp104 and the rate of [PSI+] curing by Hsp104 overexpression.
Collapse
Affiliation(s)
- Xiaohong Zhao
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine Stanford
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Ahearn
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel C. Masison
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lois E. Greene
- Laboratory of Cell Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Picone P, Sanfilippo T, Vasto S, Baldassano S, Guggino R, Nuzzo D, Bulone D, San Biagio PL, Muscolino E, Monastero R, Dispenza C, Giacomazza D. From Small Peptides to Large Proteins against Alzheimer’sDisease. Biomolecules 2022; 12:biom12101344. [PMID: 36291553 PMCID: PMC9599460 DOI: 10.3390/biom12101344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder in the elderly. The two cardinal neuropathological hallmarks of AD are the senile plaques, which are extracellular deposits mainly constituted by beta-amyloids, and neurofibrillary tangles formed by abnormally phosphorylated Tau (p-Tau) located in the cytoplasm of neurons. Although the research has made relevant progress in the management of the disease, the treatment is still lacking. Only symptomatic medications exist for the disease, and, in the meantime, laboratories worldwide are investigating disease-modifying treatments for AD. In the present review, results centered on the use of peptides of different sizes involved in AD are presented.
Collapse
Affiliation(s)
- Pasquale Picone
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Tiziana Sanfilippo
- Ambulatorio di Nutrizione Clinica ASP Palermo, Via G. Cusmano 24, 90141 Palermo, Italy
- Anestesia e Rianimazione, Presidio Ospedaliero “S. Cimino”, 90141 Termini Imerese, Italy
| | - Sonya Vasto
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Istituti Euro-Mediterranei di Scienza e Tecnologia (IEMEST), Via M. Miraglia 20, 90139 Palermo, Italy
| | - Sara Baldassano
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Rossella Guggino
- Ambulatorio di Nutrizione Clinica ASP Palermo, Via G. Cusmano 24, 90141 Palermo, Italy
- Anestesia e Rianimazione, Presidio Ospedaliero “S. Cimino”, 90141 Termini Imerese, Italy
| | - Domenico Nuzzo
- Istituto per la Ricerca e l’Innovazione Biomedica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Dipartmento of Scienze Biologiche, Chimiche, Farmaceutiche e Tecnologiche (STEBICEF), University of Palermo, 90128 Palermo, Italy
- Correspondence: (D.N.); (D.G.)
| | - Donatella Bulone
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Pier Luigi San Biagio
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
| | - Emanuela Muscolino
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Bldg 6, 90128 Palermo, Italy
| | - Roberto Monastero
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università degli Studi di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Clelia Dispenza
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Bldg 6, 90128 Palermo, Italy
| | - Daniela Giacomazza
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Via U. La Malfa 153, 90146 Palermo, Italy
- Correspondence: (D.N.); (D.G.)
| |
Collapse
|