1
|
Barske T, Hagemann M. The regulatory impact of serine/threonine-specific protein phosphorylation among cyanobacteria. FRONTIERS IN PLANT SCIENCE 2025; 16:1540914. [PMID: 40012730 PMCID: PMC11863333 DOI: 10.3389/fpls.2025.1540914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/22/2025] [Indexed: 02/28/2025]
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis. To thrive under environmental fluctuations, photosynthesis and metabolic activities needs to be adjusted. Previous studies showed that the acclimation of primary carbon metabolism to fluctuating carbon/nitrogen levels is mainly regulated at post-transcriptional level including diverse posttranslational modifications (PTMs). Protein phosphorylation is regarded as main PTM in the sensing and balancing metabolic changes. In this review we aim to summarize the knowledge on serine/threonine-specific protein phosphorylation among cyanobacteria. Phosphoproteome studies identified several hundred phosphoproteins bearing many more specific phosphorylation sites. On the other hand, only relatively few serine/threonine-specific protein kinases were annotated in cyanobacterial genomes, for example 12 in the model cyanobacterium Synechocystis sp. PCC 6803. Systematic mutation of the kinase-encoding genes revealed first insights into their specific functions and substrates. Future research is needed to address how a limited number of protein kinases can specifically modify hundreds of phosphoproteins and to uncover their roles in the regulatory networks of cyanobacterial metabolism.
Collapse
Affiliation(s)
| | - Martin Hagemann
- Department Plant Physiology, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Lee K, Doello S, Hagemann M, Forchhammer K. Deciphering the tight metabolite-level regulation of glucose-1-phosphate adenylyltransferase (GlgC) for glycogen synthesis in cyanobacteria. FEBS J 2025; 292:759-775. [PMID: 39639537 PMCID: PMC11839907 DOI: 10.1111/febs.17348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/22/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
The enzyme glucose-1-phosphate adenylyltransferase (GlgC, EC:2.7.7.27) catalyses the first step in glycogen synthesis by converting glucose-1-phosphate into ADP-glucose, which is added in turn to a growing glycogen chain by glycogen synthases. Thus far, in vitro studies of GlgC were mainly performed using colorimetric or radiolabel-based phosphate release assays, limiting the option for analysing this reaction. With this work, we present a novel in vitro continuous assay coupling the subsequent glycogen synthase reaction to the GlgC reaction, thus simulating the process of glycogen synthesis in vivo. Using this assay, we revisited GlgC catalytic parameters and screened for metabolites that affect GlgC activity in Synechocystis sp. PCC 6803. We also describe in further detail the antagonistic interplay between the GlgC activator, 3-PGA and the inhibitor, inorganic phosphate, revealing the intricate mechanism by which glycogen formation responds to fluctuations in carbon and energy supply in cyanobacteria.
Collapse
Affiliation(s)
- Kenric Lee
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenGermany
| | - Sofia Doello
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenGermany
| | | | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenGermany
| |
Collapse
|
3
|
Doello S, Sauerwein J, von Manteuffel N, Burkhardt M, Neumann N, Appel J, Rapp J, Just P, Link H, Gutekunst K, Forchhammer K. Metabolite-level regulation of enzymatic activity controls awakening of cyanobacteria from metabolic dormancy. Curr Biol 2025; 35:77-86.e4. [PMID: 39626669 DOI: 10.1016/j.cub.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
Transitioning into and out of dormancy is a crucial survival strategy for many organisms. In unicellular cyanobacteria, surviving nitrogen-starved conditions involves tuning down their metabolism and reactivating it once nitrogen becomes available. Glucose-6-phosphate dehydrogenase (G6PDH), the enzyme that catalyzes the first step of the oxidative pentose phosphate (OPP) pathway, plays a key role in this process. G6PDH is produced at the onset of nitrogen starvation but remains inactive in dormant cells, only to be rapidly reactivated when nitrogen is restored. In this study, we investigated the mechanisms underlying this enzymatic regulation and found that G6PDH inactivation is primarily due to the accumulation of inhibitory metabolites. Moreover, our findings demonstrate that metabolite-level regulation is the driving force behind the resuscitation program. This study highlights the critical importance of metabolite-level regulation in ensuring rapid and precise enzymatic control, enabling microorganisms to swiftly adapt to environmental changes and undergo developmental transitions.
Collapse
Affiliation(s)
- Sofía Doello
- University of Tübingen, Microbiology and Organismic Interactions, Interfaculty Institute for Microbiology and Infection Medicine, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Jakob Sauerwein
- University of Tübingen, Microbiology and Organismic Interactions, Interfaculty Institute for Microbiology and Infection Medicine, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Nathan von Manteuffel
- University of Tübingen, Microbiology and Organismic Interactions, Interfaculty Institute for Microbiology and Infection Medicine, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Markus Burkhardt
- University of Tübingen, Microbiology and Organismic Interactions, Interfaculty Institute for Microbiology and Infection Medicine, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Niels Neumann
- University of Tübingen, Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Jens Appel
- University of Kassel, Bioenergetics in Photoautotrophs, Molecular Plant Physiology, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Johanna Rapp
- University of Tübingen, Bacterial Metabolomics, Interfaculty Institute of Microbiology and Infection Medicine, Otfried-Müller-Straße 37, 72076 Tübingen, Germany; University of Tübingen, Cluster of Excellence "Controlling Microbes to Fight Infections", Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Pauline Just
- University of Tübingen, Microbiology and Organismic Interactions, Interfaculty Institute for Microbiology and Infection Medicine, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Hannes Link
- University of Tübingen, Bacterial Metabolomics, Interfaculty Institute of Microbiology and Infection Medicine, Otfried-Müller-Straße 37, 72076 Tübingen, Germany; University of Tübingen, Cluster of Excellence "Controlling Microbes to Fight Infections", Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Kirstin Gutekunst
- University of Kassel, Bioenergetics in Photoautotrophs, Molecular Plant Physiology, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Karl Forchhammer
- University of Tübingen, Microbiology and Organismic Interactions, Interfaculty Institute for Microbiology and Infection Medicine, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Lucius S, Hagemann M. The primary carbon metabolism in cyanobacteria and its regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1417680. [PMID: 39036361 PMCID: PMC11257934 DOI: 10.3389/fpls.2024.1417680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024]
Abstract
Cyanobacteria are the only prokaryotes capable of performing oxygenic photosynthesis. Many cyanobacterial strains can live in different trophic modes, ranging from photoautotrophic and heterotrophic to mixotrophic growth. However, the regulatory mechanisms allowing a flexible switch between these lifestyles are poorly understood. As anabolic fixation of CO2 in the Calvin-Benson-Bassham (CBB) cycle and catabolic sugar-degradation pathways share intermediates and enzymatic capacity, a tight regulatory network is required to enable simultaneous opposed metabolic fluxes. The Entner-Doudoroff (ED) pathway was recently predicted as one glycolytic route, which cooperates with other pathways in glycogen breakdown. Despite low carbon flux through the ED pathway, metabolite analyses of mutants deficient in the ED pathway revealed a distinct phenotype pointing at a strong regulatory impact of this route. The small Cp12 protein downregulates the CBB cycle in darkness by inhibiting phosphoribulokinase and glyceraldehyde 3-phosphate dehydrogenase. New results of metabolomic and redox level analyses on strains with Cp12 variants extend the known role of Cp12 regulation towards the acclimation to external glucose supply under diurnal conditions as well as to fluctuations in CO2 levels in the light. Moreover, carbon and nitrogen metabolism are closely linked to maintain an essential C/N homeostasis. The small protein PirC was shown to be an important regulator of phosphoglycerate mutase, which identified this enzyme as central branching point for carbon allocation from CBB cycle towards lower glycolysis. Altered metabolite levels in the mutant ΔpirC during nitrogen starvation experiments confirm this regulatory mechanism. The elucidation of novel mechanisms regulating carbon allocation at crucial metabolic branching points could identify ways for targeted redirection of carbon flow towards desired compounds, and thus help to further establish cyanobacteria as green cell factories for biotechnological applications with concurrent utilization of sunlight and CO2.
Collapse
Affiliation(s)
| | - Martin Hagemann
- Department Plant Physiology, University of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Ortega-Martínez P, Nikkanen L, Wey LT, Florencio FJ, Allahverdiyeva Y, Díaz-Troya S. Glycogen synthesis prevents metabolic imbalance and disruption of photosynthetic electron transport from photosystem II during transition to photomixotrophy in Synechocystis sp. PCC 6803. THE NEW PHYTOLOGIST 2024; 243:162-179. [PMID: 38706429 DOI: 10.1111/nph.19793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Some cyanobacteria can grow photoautotrophically or photomixotrophically by using simultaneously CO2 and glucose. The switch between these trophic modes and the role of glycogen, their main carbon storage macromolecule, was investigated. We analysed the effect of glucose addition on the physiology, metabolic and photosynthetic state of Synechocystis sp. PCC 6803 and mutants lacking phosphoglucomutase and ADP-glucose pyrophosphorylase, with limitations in glycogen synthesis. Glycogen acted as a metabolic buffer: glucose addition increased growth and glycogen reserves in the wild-type (WT), but arrested growth in the glycogen synthesis mutants. Already 30 min after glucose addition, metabolites from the Calvin-Benson-Bassham cycle and the oxidative pentose phosphate shunt increased threefold more in the glycogen synthesis mutants than the WT. These alterations substantially affected the photosynthetic performance of the glycogen synthesis mutants, as O2 evolution and CO2 uptake were both impaired. We conclude that glycogen synthesis is essential during transitions to photomixotrophy to avoid metabolic imbalance that induces inhibition of electron transfer from PSII and subsequently accumulation of reactive oxygen species, loss of PSII core proteins, and cell death. Our study lays foundations for optimising photomixotrophy-based biotechnologies through understanding the coordination of the crosstalk between photosynthetic electron transport and metabolism.
Collapse
Affiliation(s)
- Pablo Ortega-Martínez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain
| | - Lauri Nikkanen
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland
| | - Laura T Wey
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, FI-20014, Finland
| | - Sandra Díaz-Troya
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Américo Vespucio 49, Sevilla, 41092, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Profesor García González s/n, Sevilla, 41012, Spain
| |
Collapse
|
6
|
Liu Y, Liu Z, Xing T, Li J, Zhang L, Zhao L, Gao F. Effect of chronic heat stress on the carbonylation of glycolytic enzymes in breast muscle and its correlation with the growth performance of broilers. Poult Sci 2023; 102:103103. [PMID: 37837679 PMCID: PMC10589882 DOI: 10.1016/j.psj.2023.103103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 10/16/2023] Open
Abstract
Chronic heat stress has detrimental effects on the growth performance of broilers, and the potential mechanism is under exploration. In this study, the protein carbonyl modification was introduced to glycolytic enzymes to evaluate its relationship with the growth performance of heat-stressed (HS) broilers. A total of 144 male 28-day-old broilers were assigned to 3 treatments: the normal control group (NC, raised at 22°C with free access to feed and water), the HS group (raised at 32°C with free access to feed and water), and the pair-fed group (PF, raised at 22°C with an amount of feed equal to that consumed by the HS group on a previous day). Results showed that heat stress decreased the average daily growth, increased the feed-to-gain ratio (F/G), decreased breast muscle rate, and increased abdominal fat rate compared with the NC and PF groups (P < 0.05). Higher cloacal temperature and serum creatine kinase activity were found in the HS group than those of the NC and PF groups (P < 0.05). Heat stress increased the contents of carbonyl, advanced glycation end-products, malonaldehyde, and the activities of catalase, glutathione peroxidase, and total antioxidant capacity compared with the NC and PF groups (P < 0.05). Heat stress increased the contents of glucose and lactate, declined the glycogen content, and lowered the relative protein expressions of pyruvate kinase muscle type, lactate dehydrogenase A type (LDHA), and citrate synthase compared to those of the NC group (P < 0.05). In contrast to the NC and PF groups, heat stress intensified the carbonylation levels of phosphoglucomutase 1, triosephosphate isomerase 1, β-enolase, and LDHA, which were positively correlated with the F/G (P < 0.05). These findings demonstrate that heat stress depresses growth performance on account of oxidative stress and glycolysis disorders. It further increases the carbonylation of glycolytic enzymes, which potentially correlates with the F/G by disturbing the mode of energy supply of broilers.
Collapse
Affiliation(s)
- Yingsen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaolong Li
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
7
|
Sporre E, Karlsen J, Schriever K, Asplund-Samuelsson J, Janasch M, Strandberg L, Karlsson A, Kotol D, Zeckey L, Piazza I, Syrén PO, Edfors F, Hudson EP. Metabolite interactions in the bacterial Calvin cycle and implications for flux regulation. Commun Biol 2023; 6:947. [PMID: 37723200 PMCID: PMC10507043 DOI: 10.1038/s42003-023-05318-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023] Open
Abstract
Metabolite-level regulation of enzyme activity is important for microbes to cope with environmental shifts. Knowledge of such regulations can also guide strain engineering for biotechnology. Here we apply limited proteolysis-small molecule mapping (LiP-SMap) to identify and compare metabolite-protein interactions in the proteomes of two cyanobacteria and two lithoautotrophic bacteria that fix CO2 using the Calvin cycle. Clustering analysis of the hundreds of detected interactions shows that some metabolites interact in a species-specific manner. We estimate that approximately 35% of interacting metabolites affect enzyme activity in vitro, and the effect is often minor. Using LiP-SMap data as a guide, we find that the Calvin cycle intermediate glyceraldehyde-3-phosphate enhances activity of fructose-1,6/sedoheptulose-1,7-bisphosphatase (F/SBPase) from Synechocystis sp. PCC 6803 and Cupriavidus necator in reducing conditions, suggesting a convergent feed-forward activation of the cycle. In oxidizing conditions, glyceraldehyde-3-phosphate inhibits Synechocystis F/SBPase by promoting enzyme aggregation. In contrast, the glycolytic intermediate glucose-6-phosphate activates F/SBPase from Cupriavidus necator but not F/SBPase from Synechocystis. Thus, metabolite-level regulation of the Calvin cycle is more prevalent than previously appreciated.
Collapse
Affiliation(s)
- Emil Sporre
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Jan Karlsen
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Karen Schriever
- Department of Fiber and Polymer Technology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Johannes Asplund-Samuelsson
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Markus Janasch
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465, Trondheim, Norway
| | - Linnéa Strandberg
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Anna Karlsson
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - David Kotol
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Luise Zeckey
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Ilaria Piazza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Per-Olof Syrén
- Department of Fiber and Polymer Technology, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Edfors
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Elton P Hudson
- Department of Protein Science, Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
8
|
Böhm J, Kauss K, Michl K, Engelhardt L, Brouwer EM, Hagemann M. Impact of the carbon flux regulator protein pirC on ethanol production in engineered cyanobacteria. Front Microbiol 2023; 14:1238737. [PMID: 37649635 PMCID: PMC10465007 DOI: 10.3389/fmicb.2023.1238737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Future sustainable energy production can be achieved using mass cultures of photoautotrophic microorganisms such as cyanobacteria, which are engineered to synthesize valuable products directly from CO2 and sunlight. For example, strains of the model organism Synechocystis sp. PCC 6803 have been generated to produce ethanol. Here, we performed a study to prove the hypothesis that carbon flux in the direction of pyruvate is one bottleneck to achieve high ethanol titers in cyanobacteria. Ethanol-producing strains of the cyanobacterium Synechocystis sp. PCC 6803 were generated that bear mutation in the gene pirC aiming to increase carbon flux towards pyruvate. The strains were cultivated at different nitrogen or carbon conditions and the ethanol production was analysed. Generally, a clear correlation between growth rate and ethanol production was found. The mutation of pirC, however, had only a positive impact on ethanol titers under nitrogen depletion. The increase in ethanol was accompanied by elevated pyruvate and lowered glycogen levels indicating that the absence of pirC indeed increased carbon partitioning towards lower glycolysis. Metabolome analysis revealed that this change in carbon flow had also a marked impact on the overall primary metabolism in Synechocystis sp. PCC 6803. Deletion of pirC improved ethanol production under specific conditions supporting the notion that a better understanding of regulatory mechanisms involved in cyanobacterial carbon partitioning is needed to engineer more productive cyanobacterial strains.
Collapse
Affiliation(s)
- Julien Böhm
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
- Department Aquatic Ecology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Karsten Kauss
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Klaudia Michl
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Lisa Engelhardt
- Department Microbiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Eva-Maria Brouwer
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Martin Hagemann
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| |
Collapse
|
9
|
Glucose-1,6-Bisphosphate, a Key Metabolic Regulator, Is Synthesized by a Distinct Family of α-Phosphohexomutases Widely Distributed in Prokaryotes. mBio 2022; 13:e0146922. [PMID: 35856562 PMCID: PMC9426568 DOI: 10.1128/mbio.01469-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The reactions of α-d-phosphohexomutases (αPHM) are ubiquitous, key to primary metabolism, and essential for several processes in all domains of life. The functionality of these enzymes relies on an initial phosphorylation step which requires the presence of α-d-glucose-1,6-bisphosphate (Glc-1,6-BP). While well investigated in vertebrates, the origin of this activator compound in bacteria is unknown. Here we show that the Slr1334 protein from the unicellular cyanobacterium Synechocysitis sp. PCC 6803 is a Glc-1,6-BP-synthase. Biochemical analysis revealed that Slr1334 efficiently converts fructose-1,6-bisphosphate (Frc-1,6-BP) and α-d-glucose-1-phosphate/α-d-glucose-6-phosphate into Glc-1,6-BP and also catalyzes the reverse reaction. As inferred from phylogenetic analysis, the slr1334 product belongs to a primordial subfamily of αPHMs that is present especially in deeply branching bacteria and also includes human commensals and pathogens. Remarkably, the homologue of Slr1334 in the human gut bacterium Bacteroides salyersiae catalyzes the same reaction, suggesting a conserved and essential role for the members of this αPHM subfamily.
Collapse
|