1
|
Phalip A, Netser S, Wagner S. Understanding the neurobiology of social behavior through exploring brain-wide dynamics of neural activity. Neurosci Biobehav Rev 2024; 165:105856. [PMID: 39159735 DOI: 10.1016/j.neubiorev.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Social behavior is highly complex and adaptable. It can be divided into multiple temporal stages: detection, approach, and consummatory behavior. Each stage can be further divided into several cognitive and behavioral processes, such as perceiving social cues, evaluating the social and non-social contexts, and recognizing the internal/emotional state of others. Recent studies have identified numerous brain-wide circuits implicated in social behavior and suggested the existence of partially overlapping functional brain networks underlying various types of social and non-social behavior. However, understanding the brain-wide dynamics underlying social behavior remains challenging, and several brain-scale dynamics (macro-, meso-, and micro-scale levels) need to be integrated. Here, we suggest leveraging new tools and concepts to explore social brain networks and integrate those different levels. These include studying the expression of immediate-early genes throughout the entire brain to impartially define the structure of the neuronal networks involved in a given social behavior. Then, network dynamics could be investigated using electrode arrays or multi-channel fiber photometry. Finally, tools like high-density silicon probes and miniscopes can probe neural activity in specific areas and across neuronal populations at the single-cell level.
Collapse
Affiliation(s)
- Adèle Phalip
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
2
|
Cum M, Santiago Pérez JA, Wangia E, Lopez N, Wright ES, Iwata RL, Li A, Chambers AR, Padilla-Coreano N. A systematic review and meta-analysis of how social memory is studied. Sci Rep 2024; 14:2221. [PMID: 38278973 PMCID: PMC10817899 DOI: 10.1038/s41598-024-52277-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Social recognition is crucial for survival in social species, and necessary for group living, selective reproduction, pair bonding, and dominance hierarchies. Mice and rats are the most commonly used animal models in social memory research, however current paradigms do not account for the complex social dynamics they exhibit in the wild. To assess the range of social memories being studied, we conducted a systematic analysis of neuroscience articles testing the social memory of mice and rats published within the past two decades and analyzed their methods. Our results show that despite these rodent's rich social memory capabilities, the majority of social recognition papers explore short-term memories and short-term familiarity levels with minimal exposure between subject and familiar stimuli-a narrow type of social memory. We have identified several key areas currently understudied or underrepresented: kin relationships, mates, social ranks, sex variabilities, and the effects of aging. Additionally, reporting on social stimulus variables such as housing history, strain, and age, is limited, which may impede reproducibility. Overall, our data highlight large gaps in the diversity of social memories studied and the effects social variables have on social memory mechanisms.
Collapse
Affiliation(s)
- Meghan Cum
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | | | - Erika Wangia
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Naeliz Lopez
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Elizabeth S Wright
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Ryo L Iwata
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Albert Li
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | - Amelia R Chambers
- Department of Neuroscience, University of Florida, Gainesville, 32610, USA
| | | |
Collapse
|
3
|
Cum M, Pérez JS, Wangia E, Lopez N, Wright ES, Iwata RL, Li A, Chambers AR, Padilla-Coreano N. Mind the gap: A systematic review and meta-analysis of how social memory is studied. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572606. [PMID: 38187659 PMCID: PMC10769336 DOI: 10.1101/2023.12.20.572606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Social recognition is crucial for survival in social species, and necessary for group living, selective reproduction, pair bonding, and dominance hierarchies. Mice and rats are the most commonly used animal models in social memory research, however current paradigms do not account for the complex social dynamics they exhibit in the wild. To assess the range of social memories being studied, we conducted a systematic analysis of neuroscience articles testing the social memory of mice and rats published within the past two decades and analyzed their methods. Our results show that despite these rodent's rich social memory capabilities, the majority of social recognition papers explore short-term memories and short-term familiarity levels with minimal exposure between subject and familiar stimuli - a narrow type of social memory. We have identified several key areas currently understudied or underrepresented: kin relationships, mates, social ranks, sex variabilities, and the effects of aging. Additionally, reporting on social stimulus variables such as housing history, strain, and age, is limited, which may impede reproducibility. Overall, our data highlight large gaps in the diversity of social memories studied and the effects social variables have on social memory mechanisms.
Collapse
|
4
|
Lu M, He X, Jiao Z, Hu Z, Guo Z, Dai S, Wang H, Xu D. The upregulation of glutamate decarboxylase 67 against hippocampal excitability damage in male fetal rats by prenatal caffeine exposure. ENVIRONMENTAL TOXICOLOGY 2022; 37:2703-2717. [PMID: 35917217 DOI: 10.1002/tox.23630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/25/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
As a kind of xanthine alkaloid, caffeine is widely present in beverages, food, and analgesic drugs. Our previous studies have shown that prenatal caffeine exposure (PCE) can induce programmed hypersensitivity of the hypothalamic-pituitary-adrenal (HPA) axis in offspring rats, which is involved in developing many chronic adult diseases. The present study further examined the potential molecular mechanism and toxicity targets of hippocampal dysfunction, which might mediate the programmed hypersensitivity of the HPA axis in offspring. Pregnant rats were intragastrically administered with 0, 30, and 120 mg/kg/day caffeine from gestational days (GD) 9-20, and the fetal rats were extracted at GD20. Rat fetal hippocampal H19-7/IGF1R cell line was treated with caffeine, adenosine A2A receptor (A2AR) agonist (CGS-21680) or adenylate cyclase agonist (forskolin) plus caffeine. Compared with the control group, hippocampal neurons of male fetal rats by PCE displayed increased apoptosis and reduced synaptic plasticity, whereas glutamate decarboxylase 67 (GAD67) expression was increased. Moreover, the expression of A2AR was down-regulated, PCE inhibited the cAMP/PKA/CREB/BDNF/TrkB pathway. Furthermore, the results in vitro were consistent with the in vivo study. Both CGS21680 and forskolin could reverse the above alteration caused by caffeine. These results indicated that PCE inhibits the BDNF pathway and mediates the hippocampus's glutamate (Glu) excitotoxicity. The compensatory up-regulation of GAD67 unbalanced the Glu/gamma-aminobutyric acid (GABA)ergic output, leading to the impaired negative feedback to the hypothalamus and hypersensitivity of the HPA axis.
Collapse
Affiliation(s)
- Mengxi Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xia He
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhexiao Jiao
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zewen Hu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zijing Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Shiyun Dai
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Dan Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
5
|
Chai AP, Chen XF, Xu XS, Zhang N, Li M, Li JN, Zhang L, Zhang D, Zhang X, Mao RR, Ding YQ, Xu L, Zhou QX. A Temporal Activity of CA1 Neurons Underlying Short-Term Memory for Social Recognition Altered in PTEN Mouse Models of Autism Spectrum Disorder. Front Cell Neurosci 2021; 15:699315. [PMID: 34335191 PMCID: PMC8319669 DOI: 10.3389/fncel.2021.699315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022] Open
Abstract
Memory-guided social recognition identifies someone from previous encounters or experiences, but the mechanisms of social memory remain unclear. Here, we find that a short-term memory from experiencing a stranger mouse lasting under 30 min interval is essential for subsequent social recognition in mice, but that interval prolonged to hours by replacing the stranger mouse with a familiar littermate. Optogenetic silencing of dorsal CA1 neuronal activity during trials or inter-trial intervals disrupted short-term memory-guided social recognition, without affecting the ability of being sociable or long-term memory-guided social recognition. Postnatal knockdown or knockout of autism spectrum disorder (ASD)-associated phosphatase and tensin homolog (PTEN) gene in dorsal hippocampal CA1 similarly impaired neuronal firing rate in vitro and altered firing pattern during social recognition. These PTEN mice showed deficits in social recognition with stranger mouse rather than littermate and exhibited impairment in T-maze spontaneous alternation task for testing short-term spatial memory. Thus, we suggest that a temporal activity of dorsal CA1 neurons may underlie formation of short-term memory to be critical for organizing subsequent social recognition but that is possibly disrupted in ASD.
Collapse
Affiliation(s)
- An-Ping Chai
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| | - Xue-Feng Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Xiao-Shan Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Na Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Meng Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Jin-Nan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Lei Zhang
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Dai Zhang
- Institute of Mental Health, The Sixth Hospital of Peking University, Beijing, China
| | - Xia Zhang
- Department of Cellular and Molecular Medicine, Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, ON, Canada
- Department of Psychiatry, Institute of Mental Health Research at the Royal, University of Ottawa, Ottawa, ON, Canada
| | - Rong-Rong Mao
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Yu-Qiang Ding
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| | - Qi-Xin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms, and Laboratory of Learning and Memory, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
6
|
Lunardi P, Mansk LMZ, Jaimes LF, Pereira GS. On the novel mechanisms for social memory and the emerging role of neurogenesis. Brain Res Bull 2021; 171:56-66. [PMID: 33753208 DOI: 10.1016/j.brainresbull.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023]
Abstract
Social memory (SM) is a key element in social cognition and it encompasses the neural representation of conspecifics, an essential information to guide behavior in a social context. Here we evaluate classical and cutting-edge studies on neurobiology of SM, using as a guiding principle behavioral tasks performed in adult rodents. Our review highlights the relevance of the hippocampus, especially the CA2 region, as a neural substrate for SM and suggest that neural ensembles in the olfactory bulb may also encode SM traces. Compared to other hippocampus-dependent memories, much remains to be done to describe the neurobiological foundations of SM. Nonetheless, we argue that special attention should be paid to neurogenesis. Finally, we pinpoint the remaining open question on whether the hippocampal adult neurogenesis acts through pattern separation to permit the discrimination of highly similar stimuli during behavior.
Collapse
Affiliation(s)
- Paula Lunardi
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lara M Z Mansk
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
7
|
Jiménez A, Organista-Juárez D, Torres-Castro A, Guzmán-Ruíz MA, Estudillo E, Guevara-Guzmán R. Olfactory Dysfunction in Diabetic Rats is Associated with miR-146a Overexpression and Inflammation. Neurochem Res 2020; 45:1781-1790. [PMID: 32405762 DOI: 10.1007/s11064-020-03041-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/18/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes (T2D) is associated with cognitive decline and dementia. Both neurodegenerative conditions are characterized by olfactory dysfunction (OD) which is also observed in diabetic patients. Diabetes and neurodegeneration display altered miRNAs expression; therefore, the study of miRNAs in the diabetic olfactory system is important in order to know the mechanisms involved in neurodegeneration induced by T2D. In this work we evaluated the expression of miRs206, 451, 146a and 34a in the olfactory bulb (OB) of T2D rats and its association with OD. T2D induction was performed by administering streptozotocin to neonatal rats. The olfactory function was evaluated after reaching the adulthood by employing the buried pellet and social recognition tests. After 18 weeks, animals were sacrificed to determinate miRNAs and protein expression in the OB. T2D animals showed a significant increase in the latency to find the odor stimulus in the buried pellet test and a significant reduction in the interest to investigate the novel juvenile subjects in the social recognition test, indicating OD. In miRNAs analysis we observed a significant increase of miR-146a expression in the OB of T2D rats when compared to controls. This increase in miR-146a correlated with the overexpression of IL-1β in the OB of T2D rats. The present results showed that OD in T2D rats is associated with IL-1β mediated-inflammation and miR-146a overexpression, suggesting that high levels of IL-1β could trigger miR-146a upregulation as a negative feedback of the inflammatory response in the OB of T2D rats.
Collapse
Affiliation(s)
- Adriana Jiménez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Diana Organista-Juárez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Areli Torres-Castro
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.,, IMSS Hospital General Regional 1 Dr. Carlos Mac Gregor Sánchez Navarro, Ciudad de México, México
| | - Mara A Guzmán-Ruíz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular IFC/UNAM, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez,", Ciudad de México, México
| | - Rosalinda Guevara-Guzmán
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
8
|
Ferri SL, Pallathra AA, Kim H, Dow HC, Raje P, McMullen M, Bilker WB, Siegel SJ, Abel T, Brodkin ES. Sociability development in mice with cell-specific deletion of the NMDA receptor NR1 subunit gene. GENES BRAIN AND BEHAVIOR 2019; 19:e12624. [PMID: 31721416 DOI: 10.1111/gbb.12624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
Social affiliative behavior is an important component of everyday life in many species and is likely to be disrupted in disabling ways in various neurodevelopmental and neuropsychiatric disorders. Therefore, determining the mechanisms involved in these processes is crucial. A link between N-methyl-d-aspartate (NMDA) receptor function and social behaviors has been clearly established. The cell types in which NMDA receptors are critical for social affiliative behavior, however, remain unclear. Here, we use mice carrying a conditional allele of the NMDA R1 subunit to address this question. Mice bearing a floxed NMDAR1 (NR1) allele were crossed with transgenic calcium/calmodulin-dependent kinase IIα (CaMKIIα)-Cre mice or parvalbumin (PV)-Cre mice targeting postnatal excitatory forebrain or PV-expressing interneurons, respectively, and assessed using the three-chambered Social Approach Test. We found that deletion of NR1 in PV-positive interneurons had no effect on social sniffing, but deletion of NR1 in glutamatergic pyramidal cells resulted in a significant increase in social approach behavior, regardless of age or sex. Therefore, forebrain excitatory neurons expressing NR1 play an important role in regulating social affiliative behavior.
Collapse
Affiliation(s)
- Sarah L Ferri
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Ashley A Pallathra
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hyong Kim
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Holly C Dow
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Praachi Raje
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mary McMullen
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Warren B Bilker
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven J Siegel
- Psychiatry and the Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - Edward S Brodkin
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Wang S, Tan N, Zhu X, Yao M, Wang Y, Zhang X, Xu Z. Sh3rf2 Haploinsufficiency Leads to Unilateral Neuronal Development Deficits and Autistic-Like Behaviors in Mice. Cell Rep 2019; 25:2963-2971.e6. [PMID: 30540932 DOI: 10.1016/j.celrep.2018.11.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/20/2018] [Accepted: 11/09/2018] [Indexed: 11/15/2022] Open
Abstract
Autism spectrum disorders (ASDs) include a variety of developmental brain disorders with clinical findings implicating the dysfunction of the left hemisphere. Here, we generate mice lacking one copy of Sh3rf2, which was detected in ASD patients, to determine whether Sh3rf2 is involved in brain development and whether mutation of SH3RF2 is causative for ASD and the mechanisms linking it to ASD traits. We find that mice with Sh3rf2 haploinsufficiency display significant deficits in social interaction and communication, as well as stereotyped or repetitive behaviors and hyperactivity and seizures. Disturbances in hippocampal dendritic spine development, aberrant composition of glutamatergic receptor subunits, and abnormal excitatory synaptic transmission were detected in heterozygous mutants. Remarkably, these defects are selectively unilateral. Our results support a notion that Sh3rf2 haploinsufficiency is a highly penetrant risk factor for ASD, with disease pathogenesis most likely resulting from deficits in synaptic function in the left hemisphere of the brain.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Ningdong Tan
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xingliang Zhu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Minghui Yao
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaqing Wang
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing 100101, China.
| |
Collapse
|
10
|
Temporary inactivation of the medial prefrontal cortex impairs the formation, but not the retrieval of social odor recognition memory in rats. Neurobiol Learn Mem 2019; 161:115-121. [DOI: 10.1016/j.nlm.2019.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/13/2019] [Accepted: 04/02/2019] [Indexed: 11/23/2022]
|
11
|
Harony-Nicolas H, Kay M, du Hoffmann J, Klein ME, Bozdagi-Gunal O, Riad M, Daskalakis NP, Sonar S, Castillo PE, Hof PR, Shapiro ML, Baxter MG, Wagner S, Buxbaum JD. Oxytocin improves behavioral and electrophysiological deficits in a novel Shank3-deficient rat. eLife 2017; 6. [PMID: 28139198 PMCID: PMC5283828 DOI: 10.7554/elife.18904] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 01/02/2017] [Indexed: 11/13/2022] Open
Abstract
Mutations in the synaptic gene SHANK3 lead to a neurodevelopmental disorder known as Phelan-McDermid syndrome (PMS). PMS is a relatively common monogenic and highly penetrant cause of autism spectrum disorder (ASD) and intellectual disability (ID), and frequently presents with attention deficits. The underlying neurobiology of PMS is not fully known and pharmacological treatments for core symptoms do not exist. Here, we report the production and characterization of a Shank3-deficient rat model of PMS, with a genetic alteration similar to a human SHANK3 mutation. We show that Shank3-deficient rats exhibit impaired long-term social recognition memory and attention, and reduced synaptic plasticity in the hippocampal-medial prefrontal cortex pathway. These deficits were attenuated with oxytocin treatment. The effect of oxytocin on reversing non-social attention deficits is a particularly novel finding, and the results implicate an oxytocinergic contribution in this genetically defined subtype of ASD and ID, suggesting an individualized therapeutic approach for PMS. DOI:http://dx.doi.org/10.7554/eLife.18904.001 Phelan-McDermid syndrome is a genetic disorder on the autism spectrum that affects how children develop in several ways, with additional symptoms including attention deficits, delays in learning to speak and motor problems. This syndrome is known to be caused by changes in a single gene known as SHANK3 that disrupt communication between brain cells involved in memory and learning. However, we do not know how these changes relate to the symptoms of Phelan-McDermid syndrome. To understand how genetic changes affect the human brain, researchers often carry out experiments in rats or other small rodents because they have brains that are similar to ours. Harony-Nicolas et al. genetically modified rats to carry changes in the SHANK3 gene that reflect those found in people with Phelan-McDermid syndrome. The rats had disabilities related to those seen in Phelan-McDermid syndrome, including limits in long-term social memory and reduced attention span. They also showed changes in the connections between important parts of the brain. Therefore, studying these rats could help us to understand the link between molecular and cellular changes in the brain and how they affect people with Phelan-McDermid syndrome, and associated symptoms. Previous studies have shown that a chemical called oxytocin, which is naturally produced by the brain, helps to form bonds between individuals and can cause positive feelings in relation to certain memories. Harony-Nicolas et al. found treating the rats with oxytocin boosted social memory and led to improvements in other symptoms of Phelan-McDermid syndrome. In particular, oxytocin treatment helped to increase the attention span of the rats. Rats with changes in the SHANK3 gene will be a useful tool for future research into Phelan-McDermid syndrome, particularly in understanding how it affects the connections between brain cells, leading to the symptoms of Phelan-McDermid syndrome. A future challenge will be to find out whether oxytocin has the potential to be developed into a therapy to treat Phelan-McDermid syndrome in humans. Since there is evidence that SHANK3 is involved in other forms of autism, these rats will also be useful in understanding the other ways in which autism can develop. DOI:http://dx.doi.org/10.7554/eLife.18904.002
Collapse
Affiliation(s)
- Hala Harony-Nicolas
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Maya Kay
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Johann du Hoffmann
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Matthew E Klein
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Ozlem Bozdagi-Gunal
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Mohammed Riad
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Nikolaos P Daskalakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Sankalp Sonar
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Patrick R Hof
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Matthew L Shapiro
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Mark G Baxter
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States.,Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| |
Collapse
|
12
|
Bird CW, Barto D, Magcalas CM, Rodriguez CI, Donaldson T, Davies S, Savage DD, Hamilton DA. Ifenprodil infusion in agranular insular cortex alters social behavior and vocalizations in rats exposed to moderate levels of ethanol during prenatal development. Behav Brain Res 2016; 320:1-11. [PMID: 27888019 DOI: 10.1016/j.bbr.2016.11.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/27/2016] [Accepted: 11/21/2016] [Indexed: 01/21/2023]
Abstract
Moderate exposure to alcohol during development leads to subtle neurobiological and behavioral effects classified under the umbrella term fetal alcohol spectrum disorders (FASDs). Alterations in social behaviors are a frequently observed consequence of maternal drinking, as children with FASDs display inappropriate aggressive behaviors and altered responses to social cues. Rodent models of FASDs mimic the behavioral alterations seen in humans, with rats exposed to ethanol during development displaying increased aggressive behaviors, decreased social investigation, and altered play behavior. Work from our laboratory has observed increased wrestling behavior in adult male rats following prenatal alcohol exposure (PAE), and increased expression of GluN2B-containing NMDA receptors in the agranular insular cortex (AIC). This study was undertaken to determine if ifenprodil, a GluN2B preferring negative allosteric modulator, has a significant effect on social behaviors in PAE rats. Using a voluntary ethanol exposure paradigm, rat dams were allowed to drink a saccharin-sweetened solution of either 0% or 5% ethanol throughout gestation. Offspring at 6-8 months of age were implanted with cannulae into AIC. Animals were isolated for 24h before ifenprodil or vehicle was infused into AIC, and after 15min they were recorded in a social interaction chamber. Ifenprodil treatment altered aspects of wrestling, social investigatory behaviors, and ultrasonic vocalizations in rats exposed to ethanol during development that were not observed in control animals. These data indicate that GluN2B-containing NMDA receptors in AIC play a role in social behaviors and may underlie alterations in behavior and vocalizations observed in PAE animals.
Collapse
Affiliation(s)
- Clark W Bird
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States.
| | - Daniel Barto
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Christy M Magcalas
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Carlos I Rodriguez
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Tia Donaldson
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Daniel D Savage
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States; Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
13
|
Jacobs S, Tsien JZ. Adult forebrain NMDA receptors gate social motivation and social memory. Neurobiol Learn Mem 2016; 138:164-172. [PMID: 27575297 DOI: 10.1016/j.nlm.2016.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/12/2016] [Accepted: 08/25/2016] [Indexed: 01/13/2023]
Abstract
Motivation to engage in social interaction is critical to ensure normal social behaviors, whereas dysregulation in social motivation can contribute to psychiatric diseases such as schizophrenia, autism, social anxiety disorders and post-traumatic stress disorder (PTSD). While dopamine is well known to regulate motivation, its downstream targets are poorly understood. Given the fact that the dopamine 1 (D1) receptors are often physically coupled with the NMDA receptors, we hypothesize that the NMDA receptor activity in the adult forebrain principal neurons are crucial not only for learning and memory, but also for the proper gating of social motivation. Here, we tested this hypothesis by examining sociability and social memory in inducible forebrain-specific NR1 knockout mice. These mice are ideal for exploring the role of the NR1 subunit in social behavior because the NR1 subunit can be selectively knocked out after the critical developmental period, in which NR1 is required for normal development. We found that the inducible deletion of the NMDA receptors prior to behavioral assays impaired, not only object and social recognition memory tests, but also resulted in profound deficits in social motivation. Mice with ablated NR1 subunits in the forebrain demonstrated significant decreases in sociability compared to their wild type counterparts. These results suggest that in addition to its crucial role in learning and memory, the NMDA receptors in the adult forebrain principal neurons gate social motivation, independent of neuronal development.
Collapse
Affiliation(s)
- Stephanie Jacobs
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA 30907, USA
| | - Joe Z Tsien
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University, Augusta, GA 30907, USA.
| |
Collapse
|
14
|
Yamamoto H, Kamegaya E, Hagino Y, Takamatsu Y, Sawada W, Matsuzawa M, Ide S, Yamamoto T, Mishina M, Ikeda K. Loss of GluN2D subunit results in social recognition deficit, social stress, 5-HT 2C receptor dysfunction, and anhedonia in mice. Neuropharmacology 2016; 112:188-197. [PMID: 27480795 DOI: 10.1016/j.neuropharm.2016.07.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
The N-methyl-d-aspartate (NMDA) receptor channel is involved in various physiological functions, including learning and memory. The GluN2D subunit of the NMDA receptor has low expression in the mature brain, and its role is not fully understood. In the present study, the effects of GluN2D subunit deficiency on emotional and cognitive function were investigated in GluN2D knockout (KO) mice. We found a reduction of motility (i.e., a depressive-like state) in the tail suspension test and a reduction of sucrose preference (i.e., an anhedonic state) in GluN2D KO mice that were group-housed with littermates. Despite apparently normal olfactory function and social interaction, GluN2D KO mice exhibited a decrease in preference for social novelty, suggesting a deficit in social recognition or memory. Golgi-Cox staining revealed a reduction of the complexity of dendritic trees in the accessory olfactory bulb in GluN2D KO mice, suggesting a deficit in pheromone processing pathway activation, which modulates social recognition. The deficit in social recognition may result in social stress in GluN2D KO mice. Isolation housing is a procedure that has been shown to reduce stress in mice. Interestingly, 3-week isolation and treatment with agomelatine or the 5-hydroxytryptamine-2C (5-HT2C) receptor antagonist SB242084 reversed the anhedonic-like state in GluN2D KO mice. In contrast, treatment with the 5-HT2C receptor agonist CP809101 induced depressive- and anhedonic-like states in isolated GluN2D KO mice. These results suggest that social stress that is caused by a deficit in social recognition desensitizes 5-HT2c receptors, followed by an anhedonic- and depressive-like state, in GluN2D KO mice. The GluN2D subunit of the NMDA receptor appears to be important for the recognition of individuals and development of normal emotionality in mice. 5-HT2C receptor antagonism may be a therapeutic target for treating social stress-induced anhedonia. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Hideko Yamamoto
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Molecular Psychopharmacology, Graduate School of Nanosciences, Yokohama City University, Yokohama 236-0027, Japan.
| | - Etsuko Kamegaya
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yoko Hagino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Yukio Takamatsu
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Wakako Sawada
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Maaya Matsuzawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Molecular Psychopharmacology, Graduate School of Nanosciences, Yokohama City University, Yokohama 236-0027, Japan
| | - Soichiro Ide
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Toshifumi Yamamoto
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Laboratory of Molecular Psychopharmacology, Graduate School of Nanosciences, Yokohama City University, Yokohama 236-0027, Japan
| | - Masayoshi Mishina
- Ritsumeikan University Research Organization of Science and Technology, Kusatsu 525-8577, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
15
|
Li M, Liu J, Tsien JZ. Theory of Connectivity: Nature and Nurture of Cell Assemblies and Cognitive Computation. Front Neural Circuits 2016; 10:34. [PMID: 27199674 PMCID: PMC4850152 DOI: 10.3389/fncir.2016.00034] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022] Open
Abstract
Richard Semon and Donald Hebb are among the firsts to put forth the notion of cell assembly—a group of coherently or sequentially-activated neurons—to represent percept, memory, or concept. Despite the rekindled interest in this century-old idea, the concept of cell assembly still remains ill-defined and its operational principle is poorly understood. What is the size of a cell assembly? How should a cell assembly be organized? What is the computational logic underlying Hebbian cell assemblies? How might Nature vs. Nurture interact at the level of a cell assembly? In contrast to the widely assumed randomness within the mature but naïve cell assembly, the Theory of Connectivity postulates that the brain consists of the developmentally pre-programmed cell assemblies known as the functional connectivity motif (FCM). Principal cells within such FCM is organized by the power-of-two-based mathematical principle that guides the construction of specific-to-general combinatorial connectivity patterns in neuronal circuits, giving rise to a full range of specific features, various relational patterns, and generalized knowledge. This pre-configured canonical computation is predicted to be evolutionarily conserved across many circuits, ranging from these encoding memory engrams and imagination to decision-making and motor control. Although the power-of-two-based wiring and computational logic places a mathematical boundary on an individual’s cognitive capacity, the fullest intellectual potential can be brought about by optimized nature and nurture. This theory may also open up a new avenue to examining how genetic mutations and various drugs might impair or improve the computational logic of brain circuits.
Collapse
Affiliation(s)
- Meng Li
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta UniversityAugusta, GA, USA; The Brain Decoding Center, Banna Biomedical Research Institute, Yunnan Academy of Science and TechnologyYunnan, China
| | - Jun Liu
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University Augusta, GA, USA
| | - Joe Z Tsien
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia at Augusta University Augusta, GA, USA
| |
Collapse
|
16
|
Dexras1 a unique ras-GTPase interacts with NMDA receptor activity and provides a novel dissociation between anxiety, working memory and sensory gating. Neuroscience 2016; 322:408-15. [PMID: 26946266 DOI: 10.1016/j.neuroscience.2016.02.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 11/21/2022]
Abstract
Dexras1 is a novel GTPase that acts at a confluence of signaling mechanisms associated with psychiatric and neurological disease including NMDA receptors, NOS1AP and nNOS. Recent work has shown that Dexras1 mediates iron trafficking and NMDA-dependent neurodegeneration but a role for Dexras1 in normal brain function or psychiatric disease has not been studied. To test for such a role, mice with germline knockout (KO) of Dexras1 were assayed for behavioral abnormalities as well as changes in NMDA receptor subunit protein expression. Because Dexras1 is up-regulated during stress or by dexamethasone treatment, we included measures associated with emotion including anxiety and depression. Baseline anxiety-like measures (open field and zero maze) were not altered, nor were depression-like behavior (tail suspension). Measures of memory function yielded mixed results, with no changes in episodic memory (novel object recognition) but a significant decrement on working memory (T-maze). Alternatively, there was an increase in pre-pulse inhibition (PPI), without concomitant changes in either startle amplitude or locomotor activity. PPI data are consistent with the direction of change seen following exposure to dopamine D2 antagonists. An examination of NMDA subunit expression levels revealed an increased expression of the NR2A subunit, contrary to previous studies demonstrating down-regulation of the receptor following antipsychotic exposure (Schmitt et al., 2003) and up-regulation after exposure to isolation rearing (Turnock-Jones et al., 2009). These findings suggest a potential role for Dexras1 in modulating a selective subset of psychiatric symptoms, possibly via its interaction with NMDARs and/or other disease-related binding-partners. Furthermore, data suggest that modulating Dexras1 activity has contrasting effects on emotional, sensory and cognitive domains.
Collapse
|
17
|
Kumar G, Olley J, Steckler T, Talpos J. Dissociable effects of NR2A and NR2B NMDA receptor antagonism on cognitive flexibility but not pattern separation. Psychopharmacology (Berl) 2015; 232:3991-4003. [PMID: 26184010 DOI: 10.1007/s00213-015-4008-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/28/2015] [Indexed: 12/29/2022]
Abstract
RATIONALE N-methyl-D-aspartate (NMDA) receptors play crucial roles in learning and memory, but the role of each NMDA receptor subtype in a specific cognitive process is unclear. Non-selective blockers of NMDA receptor are used to model the cognitive impairment in schizophrenia and Alzheimer's disease. Counter-intuitively selective NR2A and 2B NMDA receptor antagonists are thought to have pro-cognitive properties. These seemingly contrasting findings might in part be the result of different compounds and behavioral measures used across studies. OBJECTIVE We compared the effect of NVP-AAM077 (NR2A antagonist), CP 101-606 (NR2B antagonist), and MK-801 (non-selective antagonist) in a series of touch screen tasks that can be used to measure spatial cognition and cognitive flexibility. METHODS NVP-AAM077, CP 101-606, and MK-801 were administered prior to testing, in adult male Lister-hooded rats trained in tasks of location discrimination, paired associate learning (PAL), and trial unique non-match to location (TUNL). RESULTS Results showed that MK-801 impaired performance on all the tasks. In contrast, CP 101-606 only impaired reversal learning in location discrimination and had minimal effect on working memory in TUNL and caused a modest improvement in accuracy in PAL and acquisition of a spatial discrimination. NVP-AAM077 had little effect on performance across tasks, although these data allude to a potential enhancement of acquisition of a spatial location and impairments in spatial reversal learning in a separation-dependent manner. CONCLUSIONS These data demonstrated that non-selective NMDA antagonism will disrupt numerous aspects of cognitive function. However, selective antagonism is capable of impairing or enhancing cognitive function in a task-dependent fashion.
Collapse
Affiliation(s)
- Gaurav Kumar
- Janssen Research & Development, Turnhoutseweg 30, 2340, Beerse, Belgium.
| | - Joseph Olley
- Janssen Research & Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Thomas Steckler
- Janssen Research & Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - John Talpos
- Janssen Research & Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| |
Collapse
|
18
|
Jacobs S, Wei W, Wang D, Tsien JZ. Importance of the GluN2B carboxy-terminal domain for enhancement of social memories. ACTA ACUST UNITED AC 2015; 22:401-10. [PMID: 26179233 PMCID: PMC4509920 DOI: 10.1101/lm.038521.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/09/2015] [Indexed: 12/18/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor is known to be necessary for many forms of learning and memory, including social recognition memory. Additionally, the GluN2 subunits are known to modulate multiple forms of memory, with a high GluN2A:GluN2B ratio leading to impairments in long-term memory, while a low GluN2A:GluN2B ratio enhances some forms of long-term memory. Here, we investigate the molecular motif responsible for the differences in social recognition memory and olfactory memory in the forebrain-specific transgenic GluN2A overexpression mice and the forebrain-specific transgenic GluN2B overexpression mice by using two transgenic mouse lines that overexpress chimeric GluN2 subunits. The transgenic chimeric GluN2 subunit mice were tested for their ability to learn and remember fruit scents, male juveniles of the same strain, females of the same strain, male juveniles of another strain, and rodents of another species. The data presented here demonstrate that the GluN2B carboxy-terminal domain is necessary for enhanced social recognition memory in GluN2B transgenic overexpression mice. Furthermore, the GluN2A carboxy-terminal domain is responsible for the impaired long-term olfactory and social memory observed in the GluN2A overexpression mice.
Collapse
Affiliation(s)
- Stephanie Jacobs
- Department of Neurology, Brain and Behavior Discovery Institute, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30907, USA
| | - Wei Wei
- Banna Biomedical Research Institute, Xi-Shuang-Ban-Na Prefecture, Yunnan Province, 666100, China
| | - Deheng Wang
- Banna Biomedical Research Institute, Xi-Shuang-Ban-Na Prefecture, Yunnan Province, 666100, China
| | - Joe Z Tsien
- Department of Neurology, Brain and Behavior Discovery Institute, Medical College of Georgia, Georgia Regents University, Augusta, Georgia 30907, USA
| |
Collapse
|
19
|
Bird CW, Candelaria-Cook FT, Magcalas CM, Davies S, Valenzuela CF, Savage DD, Hamilton DA. Moderate prenatal alcohol exposure enhances GluN2B containing NMDA receptor binding and ifenprodil sensitivity in rat agranular insular cortex. PLoS One 2015; 10:e0118721. [PMID: 25747876 PMCID: PMC4351952 DOI: 10.1371/journal.pone.0118721] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/06/2015] [Indexed: 12/31/2022] Open
Abstract
Prenatal exposure to alcohol affects the expression and function of glutamatergic neurotransmitter receptors in diverse brain regions. The present study was undertaken to fill a current gap in knowledge regarding the regional specificity of ethanol-related alterations in glutamatergic receptors in the frontal cortex. We quantified subregional expression and function of glutamatergic neurotransmitter receptors (AMPARs, NMDARs, GluN2B-containing NMDARs, mGluR1s, and mGluR5s) by radioligand binding in the agranular insular cortex (AID), lateral orbital area (LO), prelimbic cortex (PrL) and primary motor cortex (M1) of adult rats exposed to moderate levels of ethanol during prenatal development. Increased expression of GluN2B-containing NMDARs was observed in AID of ethanol-exposed rats compared to modest reductions in other regions. We subsequently performed slice electrophysiology measurements in a whole-cell patch-clamp preparation to quantify the sensitivity of evoked NMDAR-mediated excitatory postsynaptic currents (EPSCs) in layer II/III pyramidal neurons of AID to the GluN2B negative allosteric modulator ifenprodil. Consistent with increased GluN2B expression, ifenprodil caused a greater reduction in NMDAR-mediated EPSCs from prenatal alcohol-exposed rats than saccharin-exposed control animals. No alterations in AMPAR-mediated EPSCs or the ratio of AMPARs/NMDARs were observed. Together, these data indicate that moderate prenatal alcohol exposure has a significant and lasting impact on GluN2B-containing receptors in AID, which could help to explain ethanol-related alterations in learning and behaviors that depend on this region.
Collapse
Affiliation(s)
- Clark W. Bird
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | | | - Christy M. Magcalas
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Suzy Davies
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - C. Fernando Valenzuela
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Daniel D. Savage
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Derek A. Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, New Mexico, United States of America
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
20
|
Pomierny-Chamiolo L, Miszkiel J, Frankowska M, Pomierny B, Niedzielska E, Smaga I, Fumagalli F, Filip M. Withdrawal from cocaine self-administration and yoked cocaine delivery dysregulates glutamatergic mGlu5 and NMDA receptors in the rat brain. Neurotox Res 2014; 27:246-58. [PMID: 25408547 PMCID: PMC4353866 DOI: 10.1007/s12640-014-9502-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/06/2014] [Accepted: 11/06/2014] [Indexed: 12/16/2022]
Abstract
In human addicts and in animal models, chronic cocaine use leads to numerous alterations in glutamatergic transmission, including its receptors. The present study focused on metabotropic glutamatergic receptors type 5 (mGluR5) and N-methyl-D-aspartate receptor subunits (NMDAR: GluN1, GluN2A, GluN2B) proteins during cocaine self-administration and after 10-day of extinction training in rats. To discriminate the contingent from the non-contingent cocaine delivery, we employed the “yoked”-triad control procedure. Protein expression in rat prefrontal cortex, nucleus accumbens, hippocampus, and dorsal striatum was determined. We also examined the Homer1b/c protein, a member of the postsynaptic density protein family that links NMDAR to mGluR5. Our results revealed that cocaine self-administration selectively increased GluN1 and GluN2A subunit in the rat hippocampus and dorsal striatum, respectively, while mGluR5 protein expression was similarly increased in the dorsal striatum of both experimental groups. Withdrawal from both contingent and non-contingent cocaine delivery induced parallel increases in prefrontal cortical GluN2A protein expression, hippocampal mGluR5, and GluN1 protein expression as well as in accumbal GluN1 subunit expression, while the mGluR5 expression was reduced in the prefrontal cortex. Extinction training in animals with a history of cocaine self-administration resulted in an elevation of the hippocampal GluN2A/GluN2B subunits and accumbal mGluR5, and in a 50 % decrease of mGluR5 protein expression in the dorsal striatum. The latter reduction was associated with Homer1b/1c protein level decrease. Our results showed that both contingent and non-contingent cocaine administration produces numerous, brain region specific, alterations in the mGluR5, NMDA, and Homer1b/1c protein expression which are dependent on the modality of cocaine administration.
Collapse
Affiliation(s)
- Lucyna Pomierny-Chamiolo
- Department of Toxicology, Department of Biochemical Toxicology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, 30-688, Kraków, Poland,
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pisar M, Forrest CM, Khalil OS, McNair K, Vincenten MC, Qasem S, Darlington LG, Stone TW. Modified neocortical and cerebellar protein expression and morphology in adult rats following prenatal inhibition of the kynurenine pathway. Brain Res 2014; 1576:1-17. [DOI: 10.1016/j.brainres.2014.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|