1
|
Uehara JM, Gomez Acosta M, Bello EP, Belforte JE. Early postnatal NMDA receptor ablation in cortical interneurons impairs affective state discrimination and social functioning. Neuropsychopharmacology 2025:10.1038/s41386-025-02051-0. [PMID: 39833563 DOI: 10.1038/s41386-025-02051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Emotion recognition is fundamental for effective social interactions among conspecifics. Impairments in affective state processing underlie several neuropsychiatric disorders, including schizophrenia, although the neurobiological substrate of these deficits remains unknown. We investigated the impact of early NMDA receptor hypofunction on socio-affective behaviors. Male mice lacking NMDA receptors in GABAergic interneurons of cerebral and hippocampal cortices from an early postnatal age (interNMDAr-KO mutants) were evaluated in affective state discrimination, social preference and social novelty preference, hierarchy and dominance, aggression and territoriality, and long-term social interaction. We show that interNMDAr-KO mice failed to discriminate conspecifics based on their affective states, unlike control littermates, while exhibiting an intact preference for social stimuli over inanimate objects. This discrimination deficit was observed regardless of whether affective valences were manipulated positively or negatively, via a palatable reward or social defeat, respectively. Additionally, interNMDAr-KO mice failed to establish a normal social hierarchy, consistently assuming subordinate roles against control littermates, and presented an abnormal response to conspecifics in the resident-intruder test. Finally, mice lacking NMDA receptors in GABAergic interneurons exhibited social withdrawal following exposure to unfamiliar conspecifics in a custom setting designed to monitor social behavior over extended time periods. This deficit was reversed by subchronic clozapine treatment. Our study thoroughly assessed the impact of a pathophysiological manipulation relevant to schizophrenia on social behavior in mice. Overall, this study provides evidence demonstrating that altered NMDAr-dependent development of cortical and hippocampal interneurons impairs affective state discrimination and leads to deficits in social functioning and long-term sociality.
Collapse
Affiliation(s)
- Juan M Uehara
- Grupo de Neurociencia de Sistemas, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay), UBA-CONICET, Buenos Aires, Argentina
| | - Martina Gomez Acosta
- Grupo de Neurociencia de Sistemas, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay), UBA-CONICET, Buenos Aires, Argentina
| | - Estefanía P Bello
- Grupo de Neurociencia de Sistemas, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay), UBA-CONICET, Buenos Aires, Argentina.
| | - Juan E Belforte
- Grupo de Neurociencia de Sistemas, Departamento de Ciencias Fisiológicas, Facultad de Ciencias Médicas, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay), UBA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Finszter CK, Kemecsei R, Zachar G, Holtkamp S, Echevarría D, Adorján I, Ádám Á, Csillag A. Early cellular and synaptic changes in dopaminoceptive forebrain regions of juvenile mice following gestational exposure to valproate. Front Neuroanat 2023; 17:1235047. [PMID: 37603782 PMCID: PMC10435871 DOI: 10.3389/fnana.2023.1235047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/19/2023] [Indexed: 08/23/2023] Open
Abstract
Gestational exposure of mice to valproic acid (VPA) is one currently used experimental model for the investigation of typical failure symptoms associated with autism spectrum disorder (ASD). In the present study we hypothesized that the reduction of dopaminergic source neurons of the VTA, followed by perturbed growth of the mesotelencephalic dopamine pathway (MT), should also modify pattern formation in the dopaminoceptive target regions (particularly its mesoaccumbens/mesolimbic portion). Here, we investigated VPA-evoked cellular morphological (apoptosis-frequency detected by Caspase-3, abundance of Ca-binding proteins, CaBP), as well as synaptic proteomic (western blotting) changes, in selected dopaminoceptive subpallial, as compared to pallial, regions of mice, born to mothers treated with 500 mg/kg VPA on day 13.5 of pregnancy. We observed a surge of apoptosis on VPA treatment in nearly all investigated subpallial and pallial regions; with a non-significant trend of similar increase the nucleus accumbens (NAc) at P7, the age at which the MT pathway reduction has been reported (also supplemented by current findings). Of the CaBPs, calretinin (CR) expression was decreased in pallial regions, most prominently in retrosplenial cortex, but not in the subpallium of P7 mice. Calbindin-D 28K (CB) was selectively reduced in the caudate-putamen (CPu) of VPA exposed animals at P7 but no longer at P60, pointing to a potency of repairment. The VPA-associated overall increase in apoptosis at P7 did not correlate with the abundance and distribution of CaBPs, except in CPu, in which the marked drop of CB was negatively correlated with increased apoptosis. Abundance of parvalbumin (PV) at P60 showed no significant response to VPA treatment in any of the observed regions we did not find colocalization of apoptotic (Casp3+) cells with CaBP-immunoreactive neurons. The proteomic findings suggest reduction of tyrosine hydroxylase in the crude synaptosome fraction of NAc, but not in the CPu, without simultaneous decrease of the synaptic protein, synaptophysin, indicating selective impairment of dopaminergic synapses. The morpho-functional changes found in forebrain regions of VPA-exposed mice may signify dendritic and synaptic reorganization in dopaminergic target regions, with potential translational value to similar impairments in the pathogenesis of human ASD.
Collapse
Affiliation(s)
- Cintia Klaudia Finszter
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Róbert Kemecsei
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gergely Zachar
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Sophie Holtkamp
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Diego Echevarría
- Institute of Neuroscience (UMH-CSIC), University of Miguel Hernández, Alicante, Spain
| | - István Adorján
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ágota Ádám
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - András Csillag
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Matthiesen M, Khlaifia A, Steininger CFD, Dadabhoy M, Mumtaz U, Arruda-Carvalho M. Maturation of nucleus accumbens synaptic transmission signals a critical period for the rescue of social deficits in a mouse model of autism spectrum disorder. Mol Brain 2023; 16:46. [PMID: 37226266 DOI: 10.1186/s13041-023-01028-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/20/2023] [Indexed: 05/26/2023] Open
Abstract
Social behavior emerges early in development, a time marked by the onset of neurodevelopmental disorders featuring social deficits, including autism spectrum disorder (ASD). Although social deficits are at the core of the clinical diagnosis of ASD, very little is known about their neural correlates at the time of clinical onset. The nucleus accumbens (NAc), a brain region extensively implicated in social behavior, undergoes synaptic, cellular and molecular alterations in early life, and is particularly affected in ASD mouse models. To explore a link between the maturation of the NAc and neurodevelopmental deficits in social behavior, we compared spontaneous synaptic transmission in NAc shell medium spiny neurons (MSNs) between the highly social C57BL/6J and the idiopathic ASD mouse model BTBR T+Itpr3tf/J at postnatal day (P) 4, P6, P8, P12, P15, P21 and P30. BTBR NAc MSNs display increased spontaneous excitatory transmission during the first postnatal week, and increased inhibition across the first, second and fourth postnatal weeks, suggesting accelerated maturation of excitatory and inhibitory synaptic inputs compared to C57BL/6J mice. BTBR mice also show increased optically evoked medial prefrontal cortex-NAc paired pulse ratios at P15 and P30. These early changes in synaptic transmission are consistent with a potential critical period, which could maximize the efficacy of rescue interventions. To test this, we treated BTBR mice in either early life (P4-P8) or adulthood (P60-P64) with the mTORC1 antagonist rapamycin, a well-established intervention for ASD-like behavior. Rapamycin treatment rescued social interaction deficits in BTBR mice when injected in infancy, but did not affect social interaction in adulthood.
Collapse
Affiliation(s)
- Melina Matthiesen
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | | | - Maryam Dadabhoy
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Unza Mumtaz
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
4
|
Park HRP, Williams LM, Turner RM, Gatt JM. TWIN-10: protocol for a 10-year longitudinal twin study of the neuroscience of mental well-being and resilience. BMJ Open 2022; 12:e058918. [PMID: 35777871 PMCID: PMC9252211 DOI: 10.1136/bmjopen-2021-058918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/08/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Mental well-being is a core component of mental health, and resilience is a key process of positive adaptive recovery following adversity. However, we lack an understanding of the neural mechanisms that contribute to individual variation in the trajectories of well-being and resilience relative to risk. Genetic and/or environmental factors may also modulate these mechanisms. The aim of the TWIN-10 Study is to characterise the trajectories of well-being and resilience over 12 years across four timepoints (baseline, 1 year, 10 years, 12 years) in 1669 Australian adult twins of European ancestry (to account for genetic stratification effects). To this end, we integrate data across genetics, environment, psychological self-report, neurocognitive performance and brain function measures of well-being and resilience. METHODS AND ANALYSIS Twins who took part in the baseline TWIN-E Study will be invited back to participate in the TWIN-10 Study, at 10-year and 12-year follow-up timepoints. Participants will complete an online battery of psychological self-reports, computerised behavioural assessments of neurocognitive functions and MRI testing of the brain structure and function during resting and task-evoked scans. These measures will be used as predictors of the risk versus resilience trajectory groups defined by their changing levels of well-being and illness symptoms over time as a function of trauma exposure. Structural equation models will be used to examine the association between the predictors and trajectory groups of resilience and risk over time. Univariate and multivariate twin modelling will be used to determine heritability of the measures, as well as the shared versus unique genetic and environmental contributions. ETHICS AND DISSEMINATION This study involves human participants. This study was approved by the University of New South Wales Human Research Ethics Committee (HC180403) and the Scientific Management Panel of Neuroscience Research Australia Imaging (CX2019-05). Results will be disseminated through publications and presentations to the public and the academic community. Participants gave informed consent to participate in the study before taking part.
Collapse
Affiliation(s)
- Haeme R P Park
- Neuroscience Research Australia, Randwick, New South Wales, Sydney, Australia
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Leanne M Williams
- Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Robin M Turner
- Biostatistics Centre, Division of Health Sciences, University of Otago, Dunedin, Central Dunedin, New Zealand
| | - Justine M Gatt
- Neuroscience Research Australia, Randwick, New South Wales, Sydney, Australia
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
5
|
Lee E, Lee S, Shin JJ, Choi W, Chung C, Lee S, Kim J, Ha S, Kim R, Yoo T, Yoo YE, Kim J, Noh YW, Rhim I, Lee SY, Kim W, Lee T, Shin H, Cho IJ, Deisseroth K, Kim SJ, Park JM, Jung MW, Paik SB, Kim E. Excitatory synapses and gap junctions cooperate to improve Pv neuronal burst firing and cortical social cognition in Shank2-mutant mice. Nat Commun 2021; 12:5116. [PMID: 34433814 PMCID: PMC8387434 DOI: 10.1038/s41467-021-25356-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
NMDA receptor (NMDAR) and GABA neuronal dysfunctions are observed in animal models of autism spectrum disorders, but how these dysfunctions impair social cognition and behavior remains unclear. We report here that NMDARs in cortical parvalbumin (Pv)-positive interneurons cooperate with gap junctions to promote high-frequency (>80 Hz) Pv neuronal burst firing and social cognition. Shank2–/– mice, displaying improved sociability upon NMDAR activation, show impaired cortical social representation and inhibitory neuronal burst firing. Cortical Shank2–/– Pv neurons show decreased NMDAR activity, which suppresses the cooperation between NMDARs and gap junctions (GJs) for normal burst firing. Shank2–/– Pv neurons show compensatory increases in GJ activity that are not sufficient for social rescue. However, optogenetic boosting of Pv neuronal bursts, requiring GJs, rescues cortical social cognition in Shank2–/– mice, similar to the NMDAR-dependent social rescue. Therefore, NMDARs and gap junctions cooperate to promote cortical Pv neuronal bursts and social cognition. How NMDAR and GABA neuronal dysfunctions result in impaired social behaviour is unclear. Here, the authors show that NMDARs and gap junctions in cortical PV interneurons modulate burst firing, affecting social behaviour.
Collapse
Affiliation(s)
- Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea.,Department of Anatomy, College of Medicine, Yonsei University, Seoul, Korea
| | - Seungjoon Lee
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Jae Jin Shin
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul, Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Korea
| | - Woochul Choi
- Program of Brain and Cognitive Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Changuk Chung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Suho Lee
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Jihye Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Seungmin Ha
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Ryunhee Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Ye-Eun Yoo
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Jisoo Kim
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Young Woo Noh
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Issac Rhim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Soo Yeon Lee
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Woohyun Kim
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Taekyung Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Hyogeun Shin
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Karl Deisseroth
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Sang Jeong Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, Korea
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Korea.
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea. .,Department of Biological Sciences, KAIST, Daejeon, Korea.
| | - Se-Bum Paik
- Program of Brain and Cognitive Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea.
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea. .,Department of Biological Sciences, KAIST, Daejeon, Korea.
| |
Collapse
|
6
|
Louth EL, Jørgensen RL, Korshoej AR, Sørensen JCH, Capogna M. Dopaminergic Neuromodulation of Spike Timing Dependent Plasticity in Mature Adult Rodent and Human Cortical Neurons. Front Cell Neurosci 2021; 15:668980. [PMID: 33967700 PMCID: PMC8102156 DOI: 10.3389/fncel.2021.668980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/29/2021] [Indexed: 11/29/2022] Open
Abstract
Synapses in the cerebral cortex constantly change and this dynamic property regulated by the action of neuromodulators such as dopamine (DA), is essential for reward learning and memory. DA modulates spike-timing-dependent plasticity (STDP), a cellular model of learning and memory, in juvenile rodent cortical neurons. However, it is unknown whether this neuromodulation also occurs at excitatory synapses of cortical neurons in mature adult mice or in humans. Cortical layer V pyramidal neurons were recorded with whole cell patch clamp electrophysiology and an extracellular stimulating electrode was used to induce STDP. DA was either bath-applied or optogenetically released in slices from mice. Classical STDP induction protocols triggered non-hebbian excitatory synaptic depression in the mouse or no plasticity at human cortical synapses. DA reverted long term synaptic depression to baseline in mouse via dopamine 2 type receptors or elicited long term synaptic potentiation in human cortical synapses. Furthermore, when DA was applied during an STDP protocol it depressed presynaptic inhibition in the mouse but not in the human cortex. Thus, DA modulates excitatory synaptic plasticity differently in human vs. mouse cortex. The data strengthens the importance of DA in gating cognition in humans, and may inform on therapeutic interventions to recover brain function from diseases.
Collapse
Affiliation(s)
- Emma Louise Louth
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | | | | | | | - Marco Capogna
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,DANDRITE, The Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark.,Center for Proteins in Memory-PROMEMO, Danish National Research Foundation, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Gao WJ, Mack NR. From Hyposociability to Hypersociability-The Effects of PSD-95 Deficiency on the Dysfunctional Development of Social Behavior. Front Behav Neurosci 2021; 15:618397. [PMID: 33584217 PMCID: PMC7876227 DOI: 10.3389/fnbeh.2021.618397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/05/2021] [Indexed: 01/11/2023] Open
Abstract
Abnormal social behavior, including both hypo- and hypersociability, is often observed in neurodevelopmental disorders such as autism spectrum disorders. However, the mechanisms associated with these two distinct social behavior abnormalities remain unknown. Postsynaptic density protein-95 (PSD-95) is a highly abundant scaffolding protein in the excitatory synapses and an essential regulator of synaptic maturation by binding to NMDA and AMPA receptors. The DLG4 gene encodes PSD-95, and it is a risk gene for hypersocial behavior. Interestingly, PSD-95 knockout mice exhibit hyposociability during adolescence but hypersociability in adulthood. The adolescent hyposociability is accompanied with an NMDAR hyperfunction in the medial prefrontal cortex (mPFC), an essential part of the social brain for control of sociability. The maturation of mPFC development is delayed until young adults. However, how PSD-95 deficiency affects the functional maturation of mPFC and its connection with other social brain regions remains uncharacterized. It is especially unknown how PSD-95 knockout drives the switch of social behavior from hypo- to hyper-sociability during adolescent-to-adult development. We propose an NMDAR-dependent developmental switch of hypo- to hyper-sociability. PSD-95 deficiency disrupts NMDAR-mediated synaptic connectivity of mPFC and social brain during development in an age- and pathway-specific manner. By utilizing the PSD-95 deficiency mouse, the mechanisms contributing to both hypo- and hyper-sociability can be studied in the same model. This will allow us to assess both local and long-range connectivity of mPFC and examine how they are involved in the distinct impairments in social behavior and how changes in these connections may mature over time.
Collapse
Affiliation(s)
- Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | | |
Collapse
|
8
|
Provenzi L, Grumi S, Giorda R, Biasucci G, Bonini R, Cavallini A, Decembrino L, Drera B, Falcone R, Fazzi E, Gardella B, Giacchero R, Nacinovich R, Pisoni C, Prefumo F, Scelsa B, Spartà MV, Veggiotti P, Orcesi S, Borgatti R. Measuring the Outcomes of Maternal COVID-19-related Prenatal Exposure (MOM-COPE): study protocol for a multicentric longitudinal project. BMJ Open 2020; 10:e044585. [PMID: 33384402 PMCID: PMC7780424 DOI: 10.1136/bmjopen-2020-044585] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION COVID-19 is a highly infectious respiratory disease that rapidly emerged as an unprecedented epidemic in Europe, with a primary hotspot in Northern Italy during the first months of 2020. Its high infection rate and rapid spread contribute to set the risk for relevant psychological stress in citizens. In this context, mother-infant health is at risk not only because of potential direct exposure to the virus but also due to high levels of stress experienced by mothers from conception to delivery. Prenatal stress exposure associates with less-than-optimal child developmental outcomes, and specific epigenetic mechanisms (eg, DNA methylation) may play a critical role in mediating this programming association. METHODS AND ANALYSIS We present the methodological protocol for a longitudinal, multicentric study on the behavioural and epigenetic effects of COVID-19-related prenatal stress in a cohort of mother-infant dyads in Northern Italy. The dyads will be enrolled at 10 facilities in Northern Italy. Saliva samples will be collected at birth to assess the methylation status of specific genes linked with stress regulation in mothers and newborns. Mothers will provide retrospective data on COVID-19-related stress during pregnancy. At 3, 6 and 12 months, mothers will provide data on child behavioural and socioemotional outcomes, their own psychological status (stress, depressive and anxious symptoms) and coping strategies. At 12 months, infants and mothers will be videotaped during semistructured interaction to assess maternal sensitivity and infant's relational functioning. ETHICS AND DISSEMINATION This study was approved by the Ethics Committee (Pavia). Results will be published in peer-reviewed journals and presented at national and international scientific conferences. TRIAL REGISTRATION NUMBER NCT04540029; Pre-results.
Collapse
Affiliation(s)
- Livio Provenzi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Serena Grumi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Giorda
- Biology Lab, Scientific Institute, IRCCS E. Medea, Bosisi Parini, Italy
| | - Giacomo Biasucci
- Pediatrics & Neonatology Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Renza Bonini
- Pediatrics & Neonatology Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Anna Cavallini
- Child and Adolescent Mental Health, San Gerardo Hospital, Monza, Italy
| | - Lidia Decembrino
- Pediatric Unit and Neonatal Unit, Ospedale Civile di Vigevano, ASST di Pavia, Vigevano, Italy
| | - Bruno Drera
- Neonatal Intensive Care Unit, Azienda Istituti Ospitalieri di Cremona, Cremona, Italy
| | - Rossana Falcone
- Pediatric Unit and Neonatal Unit, Ospedale Civile di Vigevano, ASST di Pavia, Vigevano, Italy
| | - Elisa Fazzi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Unit of Child and Adolescence Neuropsychiatry, Azienda Ospedaliera Spedali Civili di Brescia, Brescia, Italy
| | - Barbara Gardella
- Department of Obstetrics and Gynecology, IRCCS Foundation Policlinico San Matteo, Pavia, Italy
| | | | - Renata Nacinovich
- Child and Adolescent Mental Health, San Gerardo Hospital, Monza, Italy
- School of Medicine and Surgery and Milan Center for Neuroscience, University of Milano Bicocca, Milano, Italy
| | - Camilla Pisoni
- Neonatal Intensive Care Unit, IRCCS Foundation Policlinico San Matteo, Pavia, Italy
| | - Federico Prefumo
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Scelsa
- Unit of Pediatric Neurology, Buzzi Children's Hospital, Milano, Italy
| | | | - Pierangelo Veggiotti
- Unit of Pediatric Neurology, Buzzi Children's Hospital, Milano, Italy
- Biomedical and Clinical Science Department, University of Milano, Milano, Italy
| | - Simona Orcesi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Renato Borgatti
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|