1
|
Havig JR, Kuether JE, Gangidine AJ, Schroeder S, Hamilton TL. Hot Spring Microbial Community Elemental Composition: Hot Spring and Soil Inputs, and the Transition from Biocumulus to Siliceous Sinter. ASTROBIOLOGY 2021; 21:1526-1546. [PMID: 34889663 DOI: 10.1089/ast.2019.2086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrothermal systems host microbial communities that include some of the most deeply branching members of the tree of life, and recent work has suggested that terrestrial hot springs may have provided ideal conditions for the origin of life. Hydrothermal microbial communities are a potential source for biosignatures, and the presence of terrestrial hot spring deposits in 3.48 Ga rocks as well as on the surface of Mars lends weight to a need to better understand the preservation of biosignatures in these systems. Although there are general patterns of elemental enrichment in hydrothermal water dependent on physical and geochemical conditions, the elemental composition of bulk hydrothermal microbial communities (here termed biocumulus, including cellular biomass and accumulated non-cellular material) is largely unexplored. However, recent work has suggested both bulk and spatial trace element enrichment as a potential biosignature in hot spring deposits. To elucidate the elemental composition of hot spring biocumulus samples and explore the sources of those elements, we analyzed a suite of 16 elements in hot spring water samples and corresponding biocumulus from 60 hot springs sinter samples, and rock samples from 8 hydrothermal areas across Yellowstone National Park. We combined these data with values reported in literature to assess the patterns of elemental uptake into biocumulus and retention in associated siliceous sinter. Hot spring biocumuli are of biological origin, but organic carbon comprises a minor percentage of the total mass of both thermophilic chemotrophic and phototrophic biocumulus. Instead, the majority of hot spring biocumulus is inorganic material-largely silica-and the distribution of major and trace elements mimics that of surrounding rock and soil rather than the hot spring fluids. Analyses indicate a systematic loss of biologically associated elements during diagenetic transformation of biocumulus to siliceous sinter, suggesting a potential for silica sinter to preserve a trace element biosignature.
Collapse
Affiliation(s)
- Jeff R Havig
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Joshua E Kuether
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Sarah Schroeder
- Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Trinity L Hamilton
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
2
|
Kempes CP, Follows MJ, Smith H, Graham H, House CH, Levin SA. Generalized Stoichiometry and Biogeochemistry for Astrobiological Applications. Bull Math Biol 2021; 83:73. [PMID: 34008062 PMCID: PMC8131296 DOI: 10.1007/s11538-021-00877-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/25/2021] [Indexed: 11/03/2022]
Abstract
A central need in the field of astrobiology is generalized perspectives on life that make it possible to differentiate abiotic and biotic chemical systems McKay (2008). A key component of many past and future astrobiological measurements is the elemental ratio of various samples. Classic work on Earth's oceans has shown that life displays a striking regularity in the ratio of elements as originally characterized by Redfield (Redfield 1958; Geider and La Roche 2002; Eighty years of Redfield 2014). The body of work since the original observations has connected this ratio with basic ecological dynamics and cell physiology, while also documenting the range of elemental ratios found in a variety of environments. Several key questions remain in considering how to best apply this knowledge to astrobiological contexts: How can the observed variation of the elemental ratios be more formally systematized using basic biological physiology and ecological or environmental dynamics? How can these elemental ratios be generalized beyond the life that we have observed on our own planet? Here, we expand recently developed generalized physiological models (Kempes et al. 2012, 2016, 2017, 2019) to create a simple framework for predicting the variation of elemental ratios found in various environments. We then discuss further generalizing the physiology for astrobiological applications. Much of our theoretical treatment is designed for in situ measurements applicable to future planetary missions. We imagine scenarios where three measurements can be made-particle/cell sizes, particle/cell stoichiometry, and fluid or environmental stoichiometry-and develop our theory in connection with these often deployed measurements.
Collapse
Affiliation(s)
| | - Michael J Follows
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hillary Smith
- Department of Geosciences, Pennsylvania State University, University Park, PA, USA
| | - Heather Graham
- NASA Goddard Spaceflight Center, Greenbelt, MD, USA
- Catholic University of America, Washington, DC, USA
| | - Christopher H House
- Department of Geosciences, Pennsylvania State University, University Park, PA, USA
| | - Simon A Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Hart C, Gorman-Lewis D. Energetics of Acidianus ambivalens growth in response to oxygen availability. GEOBIOLOGY 2021; 19:48-62. [PMID: 32902110 DOI: 10.1111/gbi.12413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
All life requires energy to drive metabolic reactions such as growth and cell maintenance; therefore, fluctuations in energy availability can alter microbial activity. There is a gap in our knowledge concerning how energy availability affects the growth of extreme chemolithoautotrophs. Toward this end, we investigated the growth of thermoacidophile Acidianus ambivalens during sulfur oxidation under aerobic to microaerophilic conditions. Calorimetry was used to measure enthalpy (ΔHinc ) of microbial activity, and chemical changes in growth media were measured to calculate Gibbs energy change (ΔGinc ) during incubation. In all experiments, Gibbs energy was primarily dissipated through the release of heat, which suggests enthalpy-driven growth. In microaerophilic conditions, growth was significantly more efficient in terms of biomass yield (defined as C-mol biomass per mole sulfur consumed) and resulted in lower ΔGinc and ΔHinc . ΔGinc in oxygen-limited (OL) and oxygen- and CO2 -limited (OCL) microaerophilic growth conditions resulted in averages of -1.44 × 103 kJ/C-mol and -7.56 × 102 kJ/C-mol, respectively, and average ΔHinc values of -1.11 × 105 kJ/C-mol and -4.43 × 104 kJ/C-mol, respectively. High-oxygen experiments resulted in lower biomass yield values, an increase in ΔGinc to -1.71 × 104 kJ/C-mol, and more exothermic ΔHinc values of -4.71 × 105 kJ/C-mol. The observed inefficiency in high-oxygen conditions may suggest larger maintenance energy demands due to oxidative stresses and a preference for growth in microaerophilic environments.
Collapse
Affiliation(s)
- Chloe Hart
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
| | - Drew Gorman-Lewis
- Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Neveu M, Hays LE, Voytek MA, New MH, Schulte MD. The Ladder of Life Detection. ASTROBIOLOGY 2018; 18:1375-1402. [PMID: 29862836 PMCID: PMC6211372 DOI: 10.1089/ast.2017.1773] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/23/2018] [Indexed: 05/04/2023]
Abstract
We describe the history and features of the Ladder of Life Detection, a tool intended to guide the design of investigations to detect microbial life within the practical constraints of robotic space missions. To build the Ladder, we have drawn from lessons learned from previous attempts at detecting life and derived criteria for a measurement (or suite of measurements) to constitute convincing evidence for indigenous life. We summarize features of life as we know it, how specific they are to life, and how they can be measured, and sort these features in a general sense based on their likelihood of indicating life. Because indigenous life is the hypothesis of last resort in interpreting life-detection measurements, we propose a small but expandable set of decision rules determining whether the abiotic hypothesis is disproved. In light of these rules, we evaluate past and upcoming attempts at life detection. The Ladder of Life Detection is not intended to endorse specific biosignatures or instruments for life-detection measurements, and is by no means a definitive, final product. It is intended as a starting point to stimulate discussion, debate, and further research on the characteristics of life, what constitutes a biosignature, and the means to measure them.
Collapse
Affiliation(s)
- Marc Neveu
- NASA Postdoctoral Management Program Fellow, Universities Space Research Association, Columbia, Maryland
- NASA Headquarters, Washington, DC
| | - Lindsay E. Hays
- NASA Headquarters, Washington, DC
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | | | | | | |
Collapse
|
5
|
Zhang J, Elser JJ. Carbon:Nitrogen:Phosphorus Stoichiometry in Fungi: A Meta-Analysis. Front Microbiol 2017; 8:1281. [PMID: 28751879 PMCID: PMC5508194 DOI: 10.3389/fmicb.2017.01281] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Surveys of carbon:nitrogen:phosphorus ratios are available now for major groups of biota and for various aquatic and terrestrial biomes. However, while fungi play an important role in nutrient cycling in ecosystems, relatively little is known about their C:N:P stoichiometry and how it varies across taxonomic groups, functional guilds, and environmental conditions. Here we present the first systematic compilation of C:N:P data for fungi including four phyla (Ascomycota, Basidiomycota, Glomeromycota, and Zygomycota). The C, N, and P contents (percent of dry mass) of fungal biomass varied from 38 to 57%, 0.23 to 15%, and 0.040 to 5.5%, respectively. Median C:N:P stoichiometry for fungi was 250:16:1 (molar), remarkably similar to the canonical Redfield values. However, we found extremely broad variation in fungal C:N:P ratios around the central tendencies in C:N:P ratios. Lower C:P and N:P ratios were found in Ascomycota fungi than in Basidiomycota fungi while significantly lower C:N ratios (p < 0.05) and higher N:P ratios (p < 0.01) were found in ectomycorrhizal fungi than in saprotrophs. Furthermore, several fungal stoichiometric ratios were strongly correlated with geographic and abiotic environmental factors, especially latitude, precipitation, and temperature. The results have implications for understanding the roles that fungi play in function in symbioses and in soil nutrient cycling. Further work is needed on the effects of actual in situ growth conditions of fungal growth on stoichiometry in the mycelium.
Collapse
Affiliation(s)
- Ji Zhang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural SciencesKunming, China
- School of Life Sciences, Arizona State University, TempeAZ, United States
| | - James J. Elser
- School of Life Sciences, Arizona State University, TempeAZ, United States
- Flathead Lake Biological Station, University of Montana, PolsonMT, United States
| |
Collapse
|
6
|
Novoselov AA, Silva D, Schneider J, Abrevaya XC, Chaffin MS, Serrano P, Navarro MS, Conti MJ, Souza Filho CRD. Geochemical constraints on the Hadean environment from mineral fingerprints of prokaryotes. Sci Rep 2017; 7:4008. [PMID: 28638074 PMCID: PMC5479841 DOI: 10.1038/s41598-017-04161-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/22/2017] [Indexed: 11/21/2022] Open
Abstract
The environmental conditions on the Earth before 4 billion years ago are highly uncertain, largely because of the lack of a substantial rock record from this period. During this time interval, known as the Hadean, the young planet transformed from an uninhabited world to the one capable of supporting, and inhabited by the first living cells. These cells formed in a fluid environment they could not at first control, with homeostatic mechanisms developing only later. It is therefore possible that present-day organisms retain some record of the primordial fluid in which the first cells formed. Here we present new data on the elemental compositions and mineral fingerprints of both Bacteria and Archaea, using these data to constrain the environment in which life formed. The cradle solution that produced this elemental signature was saturated in barite, sphene, chalcedony, apatite, and clay minerals. The presence of these minerals, as well as other chemical features, suggests that the cradle environment of life may have been a weathering fluid interacting with dry-land silicate rocks. The specific mineral assemblage provides evidence for a moderate Hadean climate with dry and wet seasons and a lower atmospheric abundance of CO2 than is present today.
Collapse
Affiliation(s)
- Alexey A Novoselov
- University of Campinas, Institute of Geosciences, Campinas, 13083-970, Brazil.
- University of Concepción, Institute of Applied Economic Geology, Concepción, Casilla 160-C, Chile.
| | - Dailto Silva
- University of Campinas, Institute of Geosciences, Campinas, 13083-970, Brazil
| | - Jerusa Schneider
- University of Campinas, School of Civil Engineering, Architecture and Urban Design, Campinas, 13083-889, Brazil
| | - Ximena Celeste Abrevaya
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, C1428EHA, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Astronomía y Física del Espacio (IAFE), Buenos Aires, C1428ZAA, Argentina
| | | | - Paloma Serrano
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, 14473, Germany
| | | | | | | |
Collapse
|