1
|
Brocks JJ, Nettersheim BJ, Adam P, Schaeffer P, Jarrett AJM, Güneli N, Liyanage T, van Maldegem LM, Hallmann C, Hope JM. Lost world of complex life and the late rise of the eukaryotic crown. Nature 2023:10.1038/s41586-023-06170-w. [PMID: 37286610 DOI: 10.1038/s41586-023-06170-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 05/04/2023] [Indexed: 06/09/2023]
Abstract
Eukaryotic life appears to have flourished surprisingly late in the history of our planet. This view is based on the low diversity of diagnostic eukaryotic fossils in marine sediments of mid-Proterozoic age (around 1,600 to 800 million years ago) and an absence of steranes, the molecular fossils of eukaryotic membrane sterols1,2. This scarcity of eukaryotic remains is difficult to reconcile with molecular clocks that suggest that the last eukaryotic common ancestor (LECA) had already emerged between around 1,200 and more than 1,800 million years ago. LECA, in turn, must have been preceded by stem-group eukaryotic forms by several hundred million years3. Here we report the discovery of abundant protosteroids in sedimentary rocks of mid-Proterozoic age. These primordial compounds had previously remained unnoticed because their structures represent early intermediates of the modern sterol biosynthetic pathway, as predicted by Konrad Bloch4. The protosteroids reveal an ecologically prominent 'protosterol biota' that was widespread and abundant in aquatic environments from at least 1,640 to around 800 million years ago and that probably comprised ancient protosterol-producing bacteria and deep-branching stem-group eukaryotes. Modern eukaryotes started to appear in the Tonian period (1,000 to 720 million years ago), fuelled by the proliferation of red algae (rhodophytes) by around 800 million years ago. This 'Tonian transformation' emerges as one of the most profound ecological turning points in the Earth's history.
Collapse
Affiliation(s)
- Jochen J Brocks
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Benjamin J Nettersheim
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia.
- MARUM-Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany.
| | - Pierre Adam
- Université de Strasbourg, CNRS, Institut de Chimie de Strasbourg UMR 7177, Strasbourg, France
| | - Philippe Schaeffer
- Université de Strasbourg, CNRS, Institut de Chimie de Strasbourg UMR 7177, Strasbourg, France
| | - Amber J M Jarrett
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
- Northern Territory Geological Survey, Darwin, Northern Territory, Australia
| | - Nur Güneli
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Tharika Liyanage
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lennart M van Maldegem
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| | | | - Janet M Hope
- Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
2
|
Naafs BDA, Bianchini G, Monteiro FM, Sánchez-Baracaldo P. The occurrence of 2-methylhopanoids in modern bacteria and the geological record. GEOBIOLOGY 2022; 20:41-59. [PMID: 34291867 DOI: 10.1111/gbi.12465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
The 2-methylhopanes (2-MeHops) are molecular fossils of 2-methylbacteriohopanepolyols (2-MeBHPs) and among the oldest biomarkers on Earth. However, these biomarkers' specific sources are currently unexplained, including whether they reflect an expansion of marine cyanobacteria. Here, we study the occurrence of 2-MeBHPs and the genes involved in their synthesis in modern bacteria and explore the occurrence of 2-MeHops in the geological record. We find that the gene responsible for 2-MeBHP synthesis (hpnP) is widespread in cyano- and ⍺-proteobacteria, but absent or very limited in other classes/phyla of bacteria. This result is consistent with the dominance of 2-MeBHP in cyano- and ⍺-proteobacterial cultures. The review of their geological occurrence indicates that 2-MeHops are found from the Paleoproterozoic onwards, although some Precambrian samples might be biased by drilling contamination. During the Phanerozoic, high 2-MeHops' relative abundances (index >15%) are associated with climatic and biogeochemical perturbations such as the Permo/Triassic boundary and the Oceanic Anoxic Events. We analyzed the modern habitat of all hpnP-containing bacteria and find that the only one species coming from an undisputed open marine habitat is an ⍺-proteobacterium acting upon the marine nitrogen cycle. Although organisms can change their habitat in response to environmental stress and evolutionary pressure, we speculate that the high sedimentary 2-MeHops' occurrence observed during the Phanerozoic reflect ⍺-proteobacteria expansion and marine N-cycle perturbations in response to climatic and environmental change.
Collapse
Affiliation(s)
- B D A Naafs
- Organic Geochemistry Unit, School of Chemistry and School of Earth Sciences, University of Bristol, Bristol, UK
| | - G Bianchini
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | - F M Monteiro
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
3
|
Evolution of a key enzyme of aerobic metabolism reveals Proterozoic functional subunit duplication events and an ancient origin of animals. Sci Rep 2021; 11:15744. [PMID: 34344935 PMCID: PMC8333347 DOI: 10.1038/s41598-021-95094-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
The biological toolkits for aerobic respiration were critical for the rise and diversification of early animals. Aerobic life forms generate ATP through the oxidation of organic molecules in a process known as Krebs' Cycle, where the enzyme isocitrate dehydrogenase (IDH) regulates the cycle's turnover rate. Evolutionary reconstructions and molecular dating of proteins related to oxidative metabolism, such as IDH, can therefore provide an estimate of when the diversification of major taxa occurred, and their coevolution with the oxidative state of oceans and atmosphere. To establish the evolutionary history and divergence time of NAD-dependent IDH, we examined transcriptomic data from 195 eukaryotes (mostly animals). We demonstrate that two duplication events occurred in the evolutionary history of NAD-IDH, one in the ancestor of eukaryotes approximately at 1967 Ma, and another at 1629 Ma, both in the Paleoproterozoic Era. Moreover, NAD-IDH regulatory subunits β and γ are exclusive to metazoans, arising in the Mesoproterozoic. Our results therefore support the concept of an ''earlier-than-Tonian'' diversification of eukaryotes and the pre-Cryogenian emergence of a metazoan IDH enzyme.
Collapse
|
4
|
Block KR, O'Brien JM, Edwards WJ, Marnocha CL. Vertical structure of the bacterial diversity in meromictic Fayetteville Green Lake. Microbiologyopen 2021; 10:e1228. [PMID: 34459548 PMCID: PMC8330806 DOI: 10.1002/mbo3.1228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
The permanently stratified water columns in euxinic meromictic lakes produce niche environments for phototrophic sulfur oxidizers and diverse sulfur metabolisms. While Green Lake (Fayetteville, New York, NY) is known to host a diverse community of ecologically important sulfur bacteria, analyses of its microbial communities, to date, have been largely based on pigment analysis and smaller datasets from Sanger sequencing techniques. Here, we present the results of next-generation sequencing of the eubacterial community in the context of the water column geochemistry. We observed abundant purple and green sulfur bacteria, as well as anoxygenic photosynthesis-capable cyanobacteria within the upper monimolimnion. Amidst the phototrophs, we found other sulfur-cycling bacteria including sulfur disproportionators and chemotrophic sulfur oxidizers, further detailing our understanding of the sulfur cycle and microbial ecology of euxinic, meromictic lakes.
Collapse
Affiliation(s)
| | - Joy M. O'Brien
- Department of BiologyNiagara UniversityLewistonNew YorkUSA
| | | | | |
Collapse
|
5
|
Vinnichenko G, Jarrett AJM, Hope JM, Brocks JJ. Discovery of the oldest known biomarkers provides evidence for phototrophic bacteria in the 1.73 Ga Wollogorang Formation, Australia. GEOBIOLOGY 2020; 18:544-559. [PMID: 32216165 DOI: 10.1111/gbi.12390] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The discovery of mid-Proterozoic (1.8-0.8 billion years ago, Ga) indigenous biomarkers is a challenge, since biologically informative molecules of such antiquity are commonly destroyed by metamorphism or overprinted by drilling fluids and other anthropogenic petroleum products. Previously, the oldest clearly indigenous biomarkers were reported from the 1.64 Ga Barney Creek Formation in the northern Australian McArthur Basin. In this study, we present the discovery of biomarker molecules from carbonaceous shales of the 1.73 Ga Wollogorang Formation in the southern McArthur Basin, extending the biomarker record back in time by ~90 million years. The extracted hydrocarbons illustrate typical mid-Proterozoic signatures with a large unresolved complex mixture, high methyl alkane/n-alkane ratios and the absence of eukaryotic steranes. Acyclic isoprenoids, saturated carotenoid derivatives, bacterial hopanes and aromatic hopanoids and steroids also were below detection limits. However, continuous homologous series of low molecular weight C14 -C19 2,3,4- and 2,3,6-trimethyl aryl isoprenoids (AI) were identified, and C20 -C22 AI homologues were tentatively identified. Based on elevated abundances relative to abiogenic isomers, we interpret the 2,3,6-AI isomer series as biogenic molecules and the 2,3,4-AI series as possibly biogenic. The biological sources for the 2,3,6-AI series include carotenoids of cyanobacteria and/or green sulphur bacteria (Chlorobiaceae). The lower concentrated 2,3,4-AI series may be derived from purple sulphur bacteria (Chromatiaceae). These degradation products of carotenoids are the oldest known clearly indigenous molecules of likely biogenic origin.
Collapse
Affiliation(s)
- Galina Vinnichenko
- Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia
| | | | - Janet M Hope
- Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia
| | - Jochen J Brocks
- Research School of Earth Sciences, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
6
|
Porter SM. Insights into eukaryogenesis from the fossil record. Interface Focus 2020; 10:20190105. [PMID: 32642050 PMCID: PMC7333905 DOI: 10.1098/rsfs.2019.0105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Eukaryogenesis-the process by which the eukaryotic cell emerged-has long puzzled scientists. It has been assumed that the fossil record has little to say about this process, in part because important characters such as the nucleus and mitochondria are rarely preserved, and in part because the prevailing model of early eukaryotes implies that eukaryogenesis occurred before the appearance of the first eukaryotes recognized in the fossil record. Here, I propose a different scenario for early eukaryote evolution than is widely assumed. Rather than crown group eukaryotes originating in the late Paleoproterozoic and remaining ecologically minor components for more than half a billion years in a prokaryote-dominated world, I argue for a late Mesoproterozoic origin of the eukaryotic crown group, implying that eukaryogenesis can be studied using the fossil record. I review the proxy records of four crown group characters: the capacity to form cysts as evidenced by the presence of excystment structures; a complex cytoskeleton as evidenced by spines or pylomes; sterol synthesis as evidenced by steranes; and aerobic respiration-and therefore mitochondria-as evidenced by eukaryotes living in oxic environments, and argue that it might be possible to use these proxy records to infer the order in which these characters evolved. The records indicate that both cyst formation and a complex cytoskeleton appeared by late Paleoproterozoic time, and sterol synthesis appeared in the late Mesoproterozioc or early Neoproterozoic. The origin of aerobic respiration cannot as easily be pinned down, but current evidence permits the possibility that it evolved sometime in the Mesoproterozoic.
Collapse
Affiliation(s)
- Susannah M. Porter
- Department of Earth Science, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
7
|
Weathering in a world without terrestrial life recorded in the Mesoproterozoic Velkerri Formation. Nat Commun 2019; 10:3448. [PMID: 31371725 PMCID: PMC6671950 DOI: 10.1038/s41467-019-11421-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/03/2019] [Indexed: 11/08/2022] Open
Abstract
Today the terrestrial surface drives biogeochemical cycles on Earth through chemical weathering reactions mediated by the biological influence of soils. Prior to the expansion of life on to land, abiotic weathering may have resulted in different boundary conditions affecting the composition of the biosphere. Here we show a striking difference in weathering produced minerals preserved in the Mesoproterozoic Velkerri Formation. While the bulk chemistry and mineralogy is dominated by illite similar to many modern mudstones, application of a novel microbeam technology reveals that the initial detrital minerals were composed of mica (28%) and feldspar (45%) with only a trace amount (<2%) of typical soil formed clay minerals. The majority of illite and the high Al2O3 fraction previously interpreted as a weathering signal, is present as a replacement of feldspar and mica. These sediments record physical erosion with limited pedogenic clay mineral formation implying fundamentally different weathering pathways.
Collapse
|
8
|
Dynamic interaction between basin redox and the biogeochemical nitrogen cycle in an unconventional Proterozoic petroleum system. Sci Rep 2019; 9:5200. [PMID: 30914671 PMCID: PMC6435709 DOI: 10.1038/s41598-019-40783-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/21/2019] [Indexed: 01/12/2023] Open
Abstract
Precambrian hydrocarbons and their corresponding source rocks are distinctly different from their Phanerozoic counterparts, having been deposited in persistently anoxic environments in ecosystems dominated by bacteria. Here, we show that cyclic enrichment of organic matter in the world’s oldest hydrocarbon play (ca. 1.38 Ga), is not associated with flooding surfaces and is unrelated to variations in mineralogy or changes in the relative rate of clastic to biogenic sedimentation—factors typically attributed to organic enrichment in Phanerozoic shales. Instead, the cyclic covariation of total organic carbon, δ15N, δ13C and molybdenum are explained by the feedback between high levels of primary productivity, basin redox and the biogeochemical nitrogen cycle. These factors are important in constraining productivity in the marine biosphere, the development of Precambrian hydrocarbon source rocks, and more generally in understanding oxygenation of the ocean and atmosphere through Earth history; as all are ultimately related to organic carbon burial.
Collapse
|
9
|
Fossilised Biomolecules and Biomarkers in Carbonate Concretions from Konservat-Lagerstätten. MINERALS 2019. [DOI: 10.3390/min9030158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the vast majority of fossils, the organic matter is degraded with only an impression or cast of the organism remaining. In rare cases, ideal burial conditions result in a rapid fossilisation with an exceptional preservation of soft tissues and occasionally organic matter. Such deposits are known as Lagerstätten and have been found throughout the geological record. Exceptional preservation is often associated with finely crystalline quartz (e.g., cherts), fine sediments (e.g., muds) or volcanic ashes. Other mechanisms include burial in anoxic/euxinic sediments and in the absence of turbidity or scavenging. Exceptional preservation can also occur when an organism is encapsulated in carbonate cement, forming a concretion. This mechanism involves complex microbial processes, resulting in a supersaturation in carbonate, with microbial sulfate reduction and methane cycling the most commonly suggested processes. In addition, conditions of photic zone euxinia are often found to occur during concretion formation in marine environments. Concretions are ideal for the study of ancient and long-extinct organisms, through both imaging techniques and biomolecular approaches. These studies have provided valuable insights into the evolution of organisms and their environments through the Phanerozoic and have contributed to increasing interest in fields including chemotaxonomy, palaeobiology, palaeoecology and palaeophysiology.
Collapse
|