1
|
MacDougall AS, Esch E, Chen Q, Carroll O, Bonner C, Ohlert T, Siewert M, Sulik J, Schweiger AK, Borer ET, Naidu D, Bagchi S, Hautier Y, Wilfahrt P, Larson K, Olofsson J, Cleland E, Muthukrishnan R, O'Halloran L, Alberti J, Anderson TM, Arnillas CA, Bakker JD, Barrio IC, Biederman L, Boughton EH, Brudvig LA, Bruschetti M, Buckley Y, Bugalho MN, Cadotte MW, Caldeira MC, Catford JA, D'Antonio C, Davies K, Daleo P, Dickman CR, Donohue I, DuPre ME, Elgersma K, Eisenhauer N, Eskelinen A, Estrada C, Fay PA, Feng Y, Gruner DS, Hagenah N, Haider S, Harpole WS, Hersch-Green E, Jentsch A, Kirkman K, Knops JMH, Laanisto L, Lannes LS, Laungani R, Lkhagva A, Macek P, Martina JP, McCulley RL, Melbourne B, Mitchell R, Moore JL, Morgan JW, Muraina TO, Niu Y, Pärtel M, Peri PL, Power SA, Price JN, Prober SM, Ren Z, Risch AC, Smith NG, Sonnier G, Standish RJ, Stevens CJ, Tedder M, Tognetti P, Veen GFC, Virtanen R, Wardle GM, Waring E, Wolf AA, Yahdjian L, Seabloom EW. Widening global variability in grassland biomass since the 1980s. Nat Ecol Evol 2024; 8:1877-1888. [PMID: 39103674 DOI: 10.1038/s41559-024-02500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Global change is associated with variable shifts in the annual production of aboveground plant biomass, suggesting localized sensitivities with unclear causal origins. Combining remotely sensed normalized difference vegetation index data since the 1980s with contemporary field data from 84 grasslands on 6 continents, we show a widening divergence in site-level biomass ranging from +51% to -34% globally. Biomass generally increased in warmer, wetter and species-rich sites with longer growing seasons and declined in species-poor arid areas. Phenological changes were widespread, revealing substantive transitions in grassland seasonal cycling. Grazing, nitrogen deposition and plant invasion were prevalent in some regions but did not predict overall trends. Grasslands are undergoing sizable changes in production, with implications for food security, biodiversity and carbon storage especially in arid regions where declines are accelerating.
Collapse
Affiliation(s)
- Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden.
| | - Ellen Esch
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Qingqing Chen
- Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Oliver Carroll
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Colin Bonner
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Timothy Ohlert
- Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Matthias Siewert
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - John Sulik
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada
| | - Anna K Schweiger
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Dilip Naidu
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Sumanta Bagchi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Peter Wilfahrt
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Keith Larson
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Johan Olofsson
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Elsa Cleland
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, USA
| | | | - Lydia O'Halloran
- Baruch Institute of Coastal Ecology and Forest Science, Clemson University, Clemson, SC, USA
| | - Juan Alberti
- Instituto de Investigaciones Marinas y Costeras (IIMyC) FCEyN, UNMdP-CONICET, Mar del Plata, Argentina
| | | | - Carlos A Arnillas
- Department of Physical and Environmental Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Isabel C Barrio
- Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, Reykjavik, Iceland
| | - Lori Biederman
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Lars A Brudvig
- Department of Plant Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
| | - Martin Bruschetti
- Instituto de Investigaciones Marinas y Costeras (IIMyC) FCEyN, UNMdP-CONICET, Mar del Plata, Argentina
| | - Yvonne Buckley
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Miguel N Bugalho
- Centre for Applied Ecology, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Maria C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Jane A Catford
- Department of Geography, King's College London, London, UK
| | - Carla D'Antonio
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Kendi Davies
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Pedro Daleo
- Instituto de Investigaciones Marinas y Costeras (IIMyC) FCEyN, UNMdP-CONICET, Mar del Plata, Argentina
| | - Christopher R Dickman
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | | | | | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Anu Eskelinen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Philip A Fay
- USDA-ARS Grassland Soil, and Water Research Laboratory, Temple, TX, USA
| | - Yanhao Feng
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Daniel S Gruner
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Nicole Hagenah
- Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Sylvia Haider
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - W Stanley Harpole
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Erika Hersch-Green
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Anke Jentsch
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | - Kevin Kirkman
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Johannes M H Knops
- Department of Health and Environmental Sciences, Jiatong-Liverpool University, Suzhou, China
| | - Lauri Laanisto
- Chair of Biodiversity and Nature Tourism, Estonian University of Life Sciences, Tartu, Estonia
| | - Lucíola S Lannes
- Department of Biology and Animal Sciences, Sao Paulo State University UNESP, Ilha Solteira, Brazil
| | - Ramesh Laungani
- Department of Environmental Science and Policy, Marist College, Poughkeepsie, NY, USA
| | | | - Petr Macek
- Institute of Hydrobiology, Biology Centre of Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jason P Martina
- Department of Biology, Texas State University, San Marcos, TX, USA
| | - Rebecca L McCulley
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Brett Melbourne
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Rachel Mitchell
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ, USA
| | - Joslin L Moore
- Arthur Rylah Institute for Environment Research, Department of Energy Environment and Climate Action, Melbourne, Victoria, Australia
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - John W Morgan
- Department of Environment and Genetics, La Trobe University, Bundoora, Victoria, Australia
| | - Taofeek O Muraina
- Department of Animal Health and Production, Oyo State College of Agriculture and Technology, Igbo-Ora, Nigeria
- Department of Biology, Texas State University, San Marcos, TX, USA
| | - Yujie Niu
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
- College of Grassland Science, Key Laboratory of Grassland Ecosystem of the Ministry of Education, Gansu Agricultural University, Lanzhou, China
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Pablo L Peri
- INTA-UNPA-CONICET, Universidad Nacional de la Patagonia, Rìo Gallegos, Argentina
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Jodi N Price
- Gulbali Institute, Charles Sturt University, Albury, New South Wales, Australia
| | - Suzanne M Prober
- CSIRO Environment, Canberra, Australian Capital Territory, Australia
| | - Zhengwei Ren
- College of Ecology, Lanzhou University, Lanzhou, China
| | - Anita C Risch
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | | | - Carly J Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Michelle Tedder
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Pedro Tognetti
- IFEVA Facultad de Agronomía, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - G F Ciska Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Risto Virtanen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Glenda M Wardle
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Elizabeth Waring
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, USA
| | - Amelia A Wolf
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Laura Yahdjian
- IFEVA Facultad de Agronomía, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
2
|
Zhang F, Gu Z, Wang H, Wang R, Qing J, Xu X, Baoyin T, Zhong L, Rui Y, Li FY. Short term grazing increased growing-season N 2O production and decreased its reduction potential by reducing the abundance and expression of nosZ clade II gene in a semi-arid steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168361. [PMID: 37944603 DOI: 10.1016/j.scitotenv.2023.168361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Understanding nitrous oxide (N2O) production as well as reduction in response to grazing and mowing is essential for designing better management strategies to improve sustainability of grassland ecosystems. We evaluated how four years of grazing or mowing altered N2O production and reduction potential, gene abundance, and expression of microbial functional groups pertinent to N2O production in situ on a typical grassland in Inner Mongolia. In our study, we found that grazing dramatically raised soil ammonium (NH4+-N) and nitrate (NO3--N) concentrations, AOB gene abundance and potential of N2O production through nitrification (NN2O) and denitrification (DN2O) in summer, but lessened the expression of nosZ clade II gene in all seasons. Mowing had minor effect on soil inorganic nitrogen (N) concentrations. Mowing diminished the quantity of denitrification genes (narG and nosZ), expression of nosZ and nosZ clade II genes, and DN2O concentration. The expression and abundance of nosZ clade II gene were related to DN2. These results suggested that short-term grazing could enhance N2O production potential in peak growing season, while the reduction in abundance and expression of nosZ calde II gene might be an important contributor to the enhanced N2O production of semi-arid typical steppe grasslands.
Collapse
Affiliation(s)
- Feifan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhibin Gu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hongyue Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ruying Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jinwu Qing
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xingliang Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources, Chinese Academy of Sciences, Beijing 100101, China
| | - Taogetao Baoyin
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology & Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lei Zhong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Yichao Rui
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Frank Yonghong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology & Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
3
|
Hu Z, Zou Y, Wang Y, Lou L, Cai Q. Elevated carbon dioxide concentrations increase the risk of Cd exposure in rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120300-120314. [PMID: 37936041 DOI: 10.1007/s11356-023-30646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
Since the Industrial Revolution, crops have been exposed to various changes in the environment, including elevated atmospheric carbon dioxide (CO2) concentration and cadmium (Cd) pollution in soil. However, information about how combined changes affect crop is limited. Here, we have investigated the changes of japonica and indica rice subspecies seedlings under elevated CO2 level (1200 ppm) and Cd exposure (5 μM Cd) conditions compared with ambient CO2 level (400 ppm) and without Cd exposure in CO2 growth chambers with hydroponic experiment. The results showed that elevated CO2 levels significantly promoted seedling growth and rescued the growth inhibition under Cd stress. However, the elevated CO2 levels led to a significant increase in the shoot Cd accumulation of the two rice subspecies. Especially, the increase of shoot Cd accumulation in indica rice was more than 50% compared with control. Further investigation revealed that the decreases in the photosynthetic pigments and photosynthetic rates caused by Cd were attenuated by the elevated CO2 levels. In addition, elevated CO2 levels increased the non-enzymatic antioxidants and significantly enhanced the ascorbate peroxidase (APX) and glutathione reductase (GR) activities, alleviating the lipid peroxidation and reactive oxygen species (ROS) accumulation induced by Cd. Overall, the research revealed how rice responded to the elevated CO2 levels and Cd exposure, which can help modify agricultural practices to ensure food security and food safety in a future high-CO2 world.
Collapse
Affiliation(s)
- Zhaoyang Hu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yiping Zou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yulong Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Laiqing Lou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingsheng Cai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Xu Q, Song X, Xu M, Xu Q, Liu Q, Tang C, Wang X, Yin W, Wang X. Elevated CO 2 and biochar differentially affect plant C:N:P stoichiometry and soil microbiota in the rhizosphere of white lupin (Lupinus albus L.). CHEMOSPHERE 2022; 308:136347. [PMID: 36087720 DOI: 10.1016/j.chemosphere.2022.136347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Biochar application is a potent climate change mitigation strategy in agroecosystems. However, little is known about the interactive effects of elevated CO2 (eCO2) and biochar on plant nutrient uptake and soil microbial processes. A pot experiment was conducted to investigate the effects of eCO2 and biochar addition on plant C:N:P stoichiometry and rhizobacterial community for better management of nutrient balance and use efficiency in a future climate scenario. White lupin (Lupinus albus L.) was grown for 30 days in topsoil and subsoil with or without 2% corn-stubble biochar under ambient CO2 (aCO2: 390 ppm) or eCO2 (550 ppm). Elevated CO2 increased, but biochar decreased, plant biomass and shoot N and P uptake, with no interactions in either soil layer. Elevated CO2 decreased shoot N concentration by 16% and biochar decreased shoot P concentration by 11%. As a result, eCO2 increased shoot C:N ratio by 20% and decreased the N:P ratio by 11%. Biochar decreased shoot C:N ratio by 8% in the subsoil under eCO2. However, biochar increased shoot C:P ratio by an average of 13% and N:P ratio by 23% in the subsoil. Moreover, plants grown in the subsoil showed lower shoot N (35%) and P (70%) uptake compared to the topsoil. The results indicate that N and P are the more limiting factors that regulate plant growth under eCO2 and biochar application, respectively. Elevated CO2 and biochar oppositely affected dominant rhizobacterial community composition, with the eCO2 effect being greater. The microbiota in the subsoil held a greater diversity of contrasting species than the topsoil, which were associated with nutrient cycling, hydrocarbon degradation and plant productivity. These results enrich our understanding of potential soil nutrient cycling and plant nutrient balance in future agroecosystems.
Collapse
Affiliation(s)
- Qiao Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China; Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Xian Song
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Meiling Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Qiuyue Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Qi Liu
- College of Forestry, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Xiaoli Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Weiqin Yin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China.
| |
Collapse
|
5
|
Shanker AK, Gunnapaneni D, Bhanu D, Vanaja M, Lakshmi NJ, Yadav SK, Prabhakar M, Singh VK. Elevated CO 2 and Water Stress in Combination in Plants: Brothers in Arms or Partners in Crime? BIOLOGY 2022; 11:biology11091330. [PMID: 36138809 PMCID: PMC9495351 DOI: 10.3390/biology11091330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 04/30/2023]
Abstract
The changing dynamics in the climate are the primary and important determinants of agriculture productivity. The effects of this changing climate on overall productivity in agriculture can be understood when we study the effects of individual components contributing to the changing climate on plants and crops. Elevated CO2 (eCO2) and drought due to high variability in rainfall is one of the important manifestations of the changing climate. There is a considerable amount of literature that addresses climate effects on plant systems from molecules to ecosystems. Of particular interest is the effect of increased CO2 on plants in relation to drought and water stress. As it is known that one of the consistent effects of increased CO2 in the atmosphere is increased photosynthesis, especially in C3 plants, it will be interesting to know the effect of drought in relation to elevated CO2. The potential of elevated CO2 ameliorating the effects of water deficit stress is evident from literature, which suggests that these two agents are brothers in arms protecting the plant from stress rather than partners in crime, specifically for water deficit when in isolation. The possible mechanisms by which this occurs will be discussed in this minireview. Interpreting the effects of short-term and long-term exposure of plants to elevated CO2 in the context of ameliorating the negative impacts of drought will show us the possible ways by which there can be effective adaption to crops in the changing climate scenario.
Collapse
|
6
|
Tu X, Wang J, Liu X, Elrys AS, Cheng Y, Zhang J, Cai ZC, Müller C. Inhibition of Elevated Atmospheric Carbon Dioxide to Soil Gross Nitrogen Mineralization Aggravated by Warming in an Agroecosystem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12745-12754. [PMID: 35985002 DOI: 10.1021/acs.est.2c04378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The response of soil gross nitrogen (N) cycling to elevated carbon dioxide (CO2) concentration and temperature has been extensively studied in natural and semi-natural ecosystems. However, how these factors and their interaction affect soil gross N dynamics in agroecosystems, strongly disturbed by human activity, remains largely unknown. Here, a 15N tracer study under aerobic incubation was conducted to quantify soil gross N transformation rates in a paddy field exposed to elevated CO2 and/or temperature for 9 years in a warming and free air CO2 enrichment experiment. Results show that long-term exposure to elevated CO2 significantly inhibited or tended to inhibit gross N mineralization at elevated and ambient temperatures, respectively. The inhibition of soil gross N mineralization by elevating CO2 was aggravated by warming in this paddy field. The inhibition of gross N mineralization under elevated CO2 could be due to decreased soil pH. Long-term exposure to elevated CO2 also significantly reduced gross autotrophic nitrification at ambient temperature, probably due to decreased soil pH and gross N mineralization. In contrast, none of the gross N transformation rates were affected by long-term exposure to warming alone. Our study provides strong evidence that long-term dual exposure to elevated CO2 and temperature has a greater negative effect on gross N mineralization rate than the single exposure, potentially resulting in progressive N limitation in this agroecosystem and ultimately increasing demand for N fertilizer.
Collapse
Affiliation(s)
- Xiaoshun Tu
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Jing Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, and Center of Agricultural and Climate Change, Nanjing Agricultural University, Nanjing 210095, China
| | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Yi Cheng
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
- Ministry of Education, Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Nanjing 210023, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Zu-Cong Cai
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Christoph Müller
- Institute of Plant Ecology, Justus Liebig University Giessen, Giessen 35392, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin D04, Ireland
| |
Collapse
|
7
|
Rosado-Porto D, Ratering S, Moser G, Deppe M, Müller C, Schnell S. Soil metatranscriptome demonstrates a shift in C, N, and S metabolisms of a grassland ecosystem in response to elevated atmospheric CO 2. Front Microbiol 2022; 13:937021. [PMID: 36081791 PMCID: PMC9445814 DOI: 10.3389/fmicb.2022.937021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Soil organisms play an important role in the equilibrium and cycling of nutrients. Because elevated CO2 (eCO2) affects plant metabolism, including rhizodeposition, it directly impacts the soil microbiome and microbial processes. Therefore, eCO2 directly influences the cycling of different elements in terrestrial ecosystems. Hence, possible changes in the cycles of carbon (C), nitrogen (N), and sulfur (S) were analyzed, alongside the assessment of changes in the composition and structure of the soil microbiome through a functional metatranscriptomics approach (cDNA from mRNA) from soil samples taken at the Giessen free-air CO2 enrichment (Gi-FACE) experiment. Results showed changes in the expression of C cycle genes under eCO2 with an increase in the transcript abundance for carbohydrate and amino acid uptake, and degradation, alongside an increase in the transcript abundance for cellulose, chitin, and lignin degradation and prokaryotic carbon fixation. In addition, N cycle changes included a decrease in the transcript abundance of N2O reductase, involved in the last step of the denitrification process, which explains the increase of N2O emissions in the Gi-FACE. Also, a shift in nitrate (NO 3 - ) metabolism occurred, with an increase in transcript abundance for the dissimilatoryNO 3 - reduction to ammonium (NH 4 + ) (DNRA) pathway. S metabolism showed increased transcripts for sulfate (SO 4 2 - ) assimilation under eCO2 conditions. Furthermore, soil bacteriome, mycobiome, and virome significantly differed between ambient and elevated CO2 conditions. The results exhibited the effects of eCO2 on the transcript abundance of C, N, and S cycles, and the soil microbiome. This finding showed a direct connection between eCO2 and the increased greenhouse gas emission, as well as the importance of soil nutrient availability to maintain the balance of soil ecosystems.
Collapse
Affiliation(s)
- David Rosado-Porto
- Institute of Applied Microbiology, Justus Liebig University, Giessen, Germany
- Faculty of Basic and Biomedical Sciences, Simón Bolívar University, Barranquilla, Colombia
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus Liebig University, Giessen, Germany
| | - Gerald Moser
- Institute of Plant Ecology, Justus Liebig University, Giessen, Germany
| | - Marianna Deppe
- Institute of Plant Ecology, Justus Liebig University, Giessen, Germany
| | - Christoph Müller
- Institute of Plant Ecology, Justus Liebig University, Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus Liebig University, Giessen, Germany
| |
Collapse
|
8
|
Rosado-Porto D, Ratering S, Cardinale M, Maisinger C, Moser G, Deppe M, Müller C, Schnell S. Elevated Atmospheric CO 2 Modifies Mostly the Metabolic Active Rhizosphere Soil Microbiome in the Giessen FACE Experiment. MICROBIAL ECOLOGY 2022; 83:619-634. [PMID: 34148108 PMCID: PMC8979872 DOI: 10.1007/s00248-021-01791-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
Elevated levels of atmospheric CO2 lead to the increase of plant photosynthetic rates, carbon inputs into soil and root exudation. In this work, the effects of rising atmospheric CO2 levels on the metabolic active soil microbiome have been investigated at the Giessen free-air CO2 enrichment (Gi-FACE) experiment on a permanent grassland site near Giessen, Germany. The aim was to assess the effects of increased C supply into the soil, due to elevated CO2, on the active soil microbiome composition. RNA extraction and 16S rRNA (cDNA) metabarcoding sequencing were performed from bulk and rhizosphere soils, and the obtained data were processed for a compositional data analysis calculating diversity indices and differential abundance analyses. The structure of the metabolic active microbiome in the rhizospheric soil showed a clear separation between elevated and ambient CO2 (p = 0.002); increased atmospheric CO2 concentration exerted a significant influence on the microbiomes differentiation (p = 0.01). In contrast, elevated CO2 had no major influence on the structure of the bulk soil microbiome (p = 0.097). Differential abundance results demonstrated that 42 bacterial genera were stimulated under elevated CO2. The RNA-based metabarcoding approach used in this research showed that the ongoing atmospheric CO2 increase of climate change will significantly shift the microbiome structure in the rhizosphere.
Collapse
Affiliation(s)
- David Rosado-Porto
- Institute of Applied Microbiology, Justus Liebig University, Giessen, DE, Germany
- Faculty of Basic and Biomedical Sciences, Simón Bolívar University, Barranquilla, Colombia
| | - Stefan Ratering
- Institute of Applied Microbiology, Justus Liebig University, Giessen, DE, Germany
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Prov.le Monteroni, 73100, Lecce, Italy
| | - Corinna Maisinger
- Institute of Applied Microbiology, Justus Liebig University, Giessen, DE, Germany
| | - Gerald Moser
- Institute of Plant Ecology, Justus Liebig University, Giessen, DE, Germany
| | - Marianna Deppe
- Institute of Plant Ecology, Justus Liebig University, Giessen, DE, Germany
| | - Christoph Müller
- Institute of Plant Ecology, Justus Liebig University, Giessen, DE, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Sylvia Schnell
- Institute of Applied Microbiology, Justus Liebig University, Giessen, DE, Germany.
| |
Collapse
|
9
|
Seibert R, Andresen LC, Jarosch KA, Moser G, Kammann CI, Yuan N, Luterbacher J, Laughlin RJ, Watson CJ, Erbs M, Müller C. Plant Functional Types Differ in Their Long-term Nutrient Response to eCO2 in an Extensive Grassland. Ecosystems 2021. [DOI: 10.1007/s10021-021-00703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractIncreasing atmospheric CO2 enhances plant biomass production and may thereby change nutrient concentrations in plant tissues. The objective of this study was to identify the effect of elevated atmospheric CO2 concentrations on nutrient concentrations of grassland biomass that have been grown for 16 years (1998–2013). The grassland biomass grown at the extensively managed Giessen FACE experiment, fumigated with ambient and elevated CO2 (aCO2; eCO2; +20%) was harvested twice annually. Concentrations of C, N, P, K, Ca, Mg, Mn, Fe, Cu and Zn were determined separately for grasses, forbs and legumes. Under eCO2, the concentration of N was reduced in grasses, Ca was reduced in grasses and forbs, P was reduced in grasses but increased in legumes, Mg concentration was reduced in grasses, forbs and legumes and K was reduced in grasses but increased in forbs. The nutrient yield (in g nutrient yield of an element per m−2) of most elements indicated negative yield responses at a zero biomass response to eCO2 for grasses. K and Zn nutrient yields responded positively to eCO2 in forbs and Mn and Fe responded positively in forbs and legumes. The results suggest that under eCO2 the nutrient concentrations were not diluted by the CO2 fertilization effect. Rather, altered plant nutrient acquisitions via changed physiological mechanisms prevail for increased C assimilation under eCO2. Furthermore, other factors such as water or nutrient availability affected plant nutrient concentrations under eCO2.
Collapse
|
10
|
Dhami N, Cazzonelli CI. Short photoperiod attenuates CO 2 fertilization effect on shoot biomass in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:825-834. [PMID: 33967465 PMCID: PMC8055755 DOI: 10.1007/s12298-021-00968-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/27/2021] [Accepted: 03/07/2021] [Indexed: 05/09/2023]
Abstract
The level of carbon dioxide (CO2) in the air can affect several traits in plants. Elevated atmospheric CO2 (eCO2) can enhance photosynthesis and increase plant productivity, including biomass, although there are inconsistencies regarding the effects of eCO2 on the plant growth response. The compounding effects of ambient environmental conditions such as light intensity, photoperiod, water availability, and soil nutrient composition can affect the extent to which eCO2 enhances plant productivity. This study aimed to investigate the growth response of Arabidopsis thaliana to eCO2 (800 ppm) under short photoperiod (8/16 h, light/dark cycle). Here, we report an attenuated fertilization effect of eCO2 on the shoot biomass of Arabidopsis plants grown under short photoperiod. The biomass of two-, three-, and four-week-old Arabidopsis plants was increased by 10%, 15%, and 28%, respectively, under eCO2 compared to the ambient CO2 (aCO2, 400 ppm) i.e. control. However, the number of rosette leaves, rosette area, and shoot biomass were similar in mature plants under both CO2 conditions, despite 40% higher photosynthesis in eCO2 exposed plants. The levels of chlorophylls and carotenoids were similar in the fully expanded rosette leaves regardless of the level of CO2. In conclusion, CO2 enrichment moderately increased Arabidopsis shoot biomass at the juvenile stage, whereas the eCO2-induced increment in shoot biomass was not apparent in mature plants. A shorter day-length can limit the source-to-sink resource allocation in a plant in age-dependent manner, hence diminishing the eCO2 fertilization effect on the shoot biomass in Arabidopsis plants grown under short photoperiod.
Collapse
Affiliation(s)
- Namraj Dhami
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
- Present Address: School of Health and Allied Sciences, Pokhara University, Pokhara 30, Kaski, Gandaki 33700 Nepal
| | - Christopher Ian Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 Australia
| |
Collapse
|
11
|
Impact of Environmental Conditions on Grass Phenology in the Regional Climate Model COSMO-CLM. ATMOSPHERE 2020. [DOI: 10.3390/atmos11121364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Feedbacks of plant phenology to the regional climate system affect fluxes of energy, water, CO2, biogenic volatile organic compounds as well as canopy conductance, surface roughness length, and are influencing the seasonality of albedo. We performed simulations with the regional climate model COSMO-CLM (CCLM) at three locations in Germany covering the period 1999 to 2015 in order to study the sensitivity of grass phenology to different environmental conditions by implementing a new phenology module. We provide new evidence that the annually-recurring standard phenology of CCLM is improved by the new calculation of leaf area index (LAI) dependent upon surface temperature, day length, and water availability. Results with the new phenology implemented in the model show a significantly higher correlation with observations than simulations with the standard phenology. The interannual variability of LAI improves the representation of vegetation in years with extremely warm winter/spring (e.g., 2007) or extremely dry summer (e.g., 2003) and shows a more realistic growth period. The effect of the newly implemented phenology on atmospheric variables is small but tends to be positive. It should be used in future applications with an extension on more plant functional types.
Collapse
|
12
|
Toreti A, Deryng D, Tubiello FN, Müller C, Kimball BA, Moser G, Boote K, Asseng S, Pugh TAM, Vanuytrecht E, Pleijel H, Webber H, Durand JL, Dentener F, Ceglar A, Wang X, Badeck F, Lecerf R, Wall GW, van den Berg M, Hoegy P, Lopez-Lozano R, Zampieri M, Galmarini S, O'Leary GJ, Manderscheid R, Mencos Contreras E, Rosenzweig C. Narrowing uncertainties in the effects of elevated CO 2 on crops. NATURE FOOD 2020; 1:775-782. [PMID: 37128059 DOI: 10.1038/s43016-020-00195-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/06/2020] [Indexed: 05/03/2023]
Abstract
Plant responses to rising atmospheric carbon dioxide (CO2) concentrations, together with projected variations in temperature and precipitation will determine future agricultural production. Estimates of the impacts of climate change on agriculture provide essential information to design effective adaptation strategies, and develop sustainable food systems. Here, we review the current experimental evidence and crop models on the effects of elevated CO2 concentrations. Recent concerted efforts have narrowed the uncertainties in CO2-induced crop responses so that climate change impact simulations omitting CO2 can now be eliminated. To address remaining knowledge gaps and uncertainties in estimating the effects of elevated CO2 and climate change on crops, future research should expand experiments on more crop species under a wider range of growing conditions, improve the representation of responses to climate extremes in crop models, and simulate additional crop physiological processes related to nutritional quality.
Collapse
Affiliation(s)
- Andrea Toreti
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | - Delphine Deryng
- NewClimate Institute, Berlin, Germany.
- IRI THESys, Humboldt-Universität zu Berlin, Berlin, Germany.
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany.
| | - Francesco N Tubiello
- Statistics Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Christoph Müller
- Potsdam Institute for Climate Impact Research PIK, Member of the Leibniz Association, Potsdam, Germany
| | - Bruce A Kimball
- US Arid-Land Agricultural Research Center, USDA-ARS, Maricopa, AZ, USA
| | - Gerald Moser
- Department of Plant Ecology, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Thomas A M Pugh
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
- Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Eline Vanuytrecht
- Flemish Institute for Technological Research (VITO), Mol, Belgium
- KU Leuven, Department of Earth and Environmental Science, Leuven, Belgium
| | - Håkan Pleijel
- Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Heidi Webber
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | | | - Frank Dentener
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrej Ceglar
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Xuhui Wang
- Laboratoire des Sciences du Climat et de l'Environment LSCE, CEA-CNRS-UVSQ, Gif-sur-Yvette, France
- Sino-French Institute of Earth System Sciences, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Franz Badeck
- Council for Agricultural Research and Agricultural Economics, Research Centre for Genomics and Bioinformatics, CREA-GB, Fiorenzuola d'Arda, Italy
| | - Remi Lecerf
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Gerard W Wall
- US Arid-Land Agricultural Research Center, USDA-ARS, Maricopa, AZ, USA
| | | | | | | | - Matteo Zampieri
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | | | - Erik Mencos Contreras
- NASA Goddard Institute for Space Studies, New York, NY, USA
- Center for Climate Systems Research, Columbia University, New York, NY, USA
| | - Cynthia Rosenzweig
- NASA Goddard Institute for Space Studies, New York, NY, USA
- Center for Climate Systems Research, Columbia University, New York, NY, USA
| |
Collapse
|
13
|
Microbial growth and carbon use efficiency show seasonal responses in a multifactorial climate change experiment. Commun Biol 2020; 3:584. [PMID: 33067550 PMCID: PMC7567817 DOI: 10.1038/s42003-020-01317-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/10/2020] [Indexed: 11/08/2022] Open
Abstract
Microbial growth and carbon use efficiency (CUE) are central to the global carbon cycle, as microbial remains form soil organic matter. We investigated how future global changes may affect soil microbial growth, respiration, and CUE. We aimed to elucidate the soil microbial response to multiple climate change drivers across the growing season and whether effects of multiple global change drivers on soil microbial physiology are additive or interactive. We measured soil microbial growth, CUE, and respiration at three time points in a field experiment combining three levels of temperature and atmospheric CO2, and a summer drought. Here we show that climate change-driven effects on soil microbial physiology are interactive and season-specific, while the coupled response of growth and respiration lead to stable microbial CUE (average CUE = 0.39). These results suggest that future research should focus on microbial growth across different seasons to understand and predict effects of global changes on soil carbon dynamics.
Collapse
|
14
|
Lara MJ, McGuire AD, Euskirchen ES, Genet H, Yi S, Rutter R, Iversen C, Sloan V, Wullschleger SD. Local-scale Arctic tundra heterogeneity affects regional-scale carbon dynamics. Nat Commun 2020; 11:4925. [PMID: 33004822 PMCID: PMC7529807 DOI: 10.1038/s41467-020-18768-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 09/01/2020] [Indexed: 02/03/2023] Open
Abstract
In northern Alaska nearly 65% of the terrestrial surface is composed of polygonal ground, where geomorphic tundra landforms disproportionately influence carbon and nutrient cycling over fine spatial scales. Process-based biogeochemical models used for local to Pan-Arctic projections of ecological responses to climate change typically operate at coarse-scales (1km2-0.5°) at which fine-scale (<1km2) tundra heterogeneity is often aggregated to the dominant land cover unit. Here, we evaluate the importance of tundra heterogeneity for representing soil carbon dynamics at fine to coarse spatial scales. We leveraged the legacy of data collected near Utqiaġvik, Alaska between 1973 and 2016 for model initiation, parameterization, and validation. Simulation uncertainty increased with a reduced representation of tundra heterogeneity and coarsening of spatial scale. Hierarchical cluster analysis of an ensemble of 21st-century simulations reveals that a minimum of two tundra landforms (dry and wet) and a maximum of 4km2 spatial scale is necessary for minimizing uncertainties (<10%) in regional to Pan-Arctic modeling applications.
Collapse
Affiliation(s)
- M J Lara
- Plant Biology Department, University of Illinois, Urbana, IL, 61801, USA.
- Geography Department, University of Illinois, Urbana, IL, 61801, USA.
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK, 99775, USA.
| | - A D McGuire
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK, 99775, USA
| | - E S Euskirchen
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK, 99775, USA
| | - H Genet
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK, 99775, USA
| | - S Yi
- Institute of Fragile Ecosystem and Environment, School of Geographic Science, Nantong University, Nantong, China
| | - R Rutter
- Institute of Arctic Biology, University of Alaska, Fairbanks, AK, 99775, USA
| | - C Iversen
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - V Sloan
- School of Civil, Aerospace and Mechanical Engineering, Queens's Building, University of Bristol, Bristol, UK
| | - S D Wullschleger
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
15
|
Su QC, Wang X, Deng C, Yun YL, Zhao Y, Peng Y. Transcriptome responses to elevated CO 2 level and Wolbachia-infection stress in Hylyphantes graminicola (Araneae: Linyphiidae). INSECT SCIENCE 2020; 27:908-920. [PMID: 31215133 DOI: 10.1111/1744-7917.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/09/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Hylyphantes graminicola is a resident spider species found in maize and cotton fields and is an important biological control agent of various pests. Previous studies have demonstrated that stress from elevated CO2 and Wolbachia infection can strongly affect spider species. Thus, based on CO2 levels (400 ppm, current atmospheric CO2 concentration and 800 ppm, high CO2 concentration) and Wolbachia status (Wolbachia-infected, W+ and Wolbachia-uninfected, W- ), we divided H. graminicola individuals into four treatment groups: W- 400 ppm, W- 800 ppm, W+ 400 ppm, and W+ 800 ppm. To investigate the effects of elevated CO2 levels (W- 400 vs W- 800), Wolbachia infection (W- 400 vs W+ 400), and the interactions between these two factors (W- 400 vs W+ 800), high-throughput transcriptome sequencing was employed to characterize the de novo transcriptome of the spiders and identify stress-related differentially expressed genes (DEGs). De novo assembly of complementary DNA sequences generated 86 688 unigenes, 23 938 of which were annotated in public databases. A total of 84, 21, and 157 DEGs were found among W- 400 vs W- 800, W- 400 vs W+ 400, and W- 400 vs W+ 800, respectively. Functional enrichment analysis revealed that metabolic processes, signaling, and catalytic activity were significantly affected by elevated CO2 levels and Wolbachia infection. Our findings suggest that the impact of elevated CO2 levels and Wolbachia infection on the H. graminicola transcriptome was, to a large extent, on genes involved in metabolic processes. This study is the first description of transcriptome changes in response to elevated CO2 levels and Wolbachia infection in spiders.
Collapse
Affiliation(s)
- Qi-Chen Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Xia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Chan Deng
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Yue-Li Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
16
|
Büntgen U, González‐Rouco JF, Luterbacher J, Stenseth NC, Johnson DM. Extending the climatological concept of
‘
Detection and Attribution’ to global change ecology in the Anthropocene. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ulf Büntgen
- Department of Geography University of Cambridge Cambridge UK
- Swiss Federal Research Institute (WSL) Birmensdorf Switzerland
- Global Change Research Institute of the Czech Academy of Sciences (CzechGlobe) Brno Czech Republic
- Department of Geography, Faculty of Science Masaryk University Brno Czech Republic
| | - J. Fidel González‐Rouco
- Department of Physics of the Earth & Astrophysics University Complutense Madrid Spain
- Institute of Geosciences IGEO (UCM‐CSIC) Madrid Spain
| | - Jürg Luterbacher
- Science and Innovation Department World Meteorological Organization (WMO) Geneva Switzerland
- Geography Department & Centre for International Development & Environmental Research Giessen Germany
| | | | - Derek M. Johnson
- Department of Biology Virginia Commonwealth University Richmond VA USA
| |
Collapse
|
17
|
Holohan AD, Müller C, McElwain J. Heritable Changes in Physiological Gas Exchange Traits in Response to Long-Term, Moderate Free-Air Carbon Dioxide Enrichment. FRONTIERS IN PLANT SCIENCE 2019; 10:1210. [PMID: 31681354 PMCID: PMC6802601 DOI: 10.3389/fpls.2019.01210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Atmospheric carbon dioxide ([CO2]) concentrations significantly alter developmental plant traits with potentially far-reaching consequences for ecosystem function and productivity. However, contemporary evolutionary responses among extant plant species that coincide with modern, anthropogenically driven [CO2] rise have rarely been demonstrated among field-grown plant populations. Here we present findings from a long-term, free-air carbon dioxide enrichment (FACE) study in a seminatural European grassland ecosystem in which we observe a differential capacity among plant species to acclimate intrinsic water-use efficiencies (WUEs) in response to prolonged multigenerational exposure to elevated [CO2] concentrations. In a reciprocal swap trial, using controlled environment growth chambers, we germinated seeds from six of the most dominant plant species at the FACE site [Arrhenatherum elatius (L.), Trisetum flavescens (L.), Holcus lanatus (L.), Geranium pratense (L.), Sanguisorba officinalis (L.), and Plantago lanceolata (L.)]. We found that long-term exposure to elevated [CO2] strongly influenced the dynamic control of WUEi in the first filial generations (F1) of all species as well as an unequal ability to adapt to changes in the [CO2] of the growth environment among those species. Furthermore, despite trait-environment relationships of this nature often being considered evidence for local adaptation in plants, we demonstrate that the ability to increase WUEi does not necessarily translate to an ecological advantage in diverse species mixtures.
Collapse
Affiliation(s)
- Aidan David Holohan
- School of Biology and Environmental Science, The Earth Institute, O’Brien Centre for Science (E4.47), University College Dublin, Dublin, Ireland
| | - Christoph Müller
- School of Biology and Environmental Science, The Earth Institute, O’Brien Centre for Science (E4.47), University College Dublin, Dublin, Ireland
- Institute for Plant Ecology and Interdisciplinary Research Center (IFZ), Justus Liebig University, Giessen, Germany
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Jennifer McElwain
- Botany Department, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
18
|
Kellner J, Houska T, Manderscheid R, Weigel HJ, Breuer L, Kraft P. Response of maize biomass and soil water fluxes on elevated CO 2 and drought-From field experiments to process-based simulations. GLOBAL CHANGE BIOLOGY 2019; 25:2947-2957. [PMID: 31166058 DOI: 10.1111/gcb.14723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/06/2019] [Accepted: 05/15/2019] [Indexed: 05/13/2023]
Abstract
The rising concentration of atmospheric carbon dioxide (CO2 ) is known to increase the total aboveground biomass of several C3 crops, whereas C4 crops are reported to be hardly affected when water supply is sufficient. However, a free-air carbon enrichment (FACE) experiment in Braunschweig, Germany, in 2007 and 2008 resulted in a 25% increased biomass of the C4 crop maize under restricted water conditions and elevated CO2 (550 ppm). To project future yields of maize under climate change, an accurate representation of the effects of eCO2 and drought on biomass and soil water conditions is essential. Current crop growth models reveal limitations in simulations of maize biomass under eCO2 and limited water supply. We use the coupled process-based hydrological-plant growth model Catchment Modeling Framework-Plant growth Modeling Framework to overcome this limitation. We apply the coupled model to the maize-based FACE experiment in Braunschweig that provides robust data for the investigation of combined CO2 and drought effects. We approve hypothesis I that CO2 enrichment has a small direct-fertilizing effect with regard to the total aboveground biomass of maize and hypothesis II that CO2 enrichment decreases water stress and leads to higher yields of maize under restricted water conditions. Hypothesis III could partly be approved showing that CO2 enrichment decreases the transpiration of maize, but does not raise soil moisture, while increasing evaporation. We emphasize the importance of plant-specific CO2 response factors derived by use of comprehensive FACE data. By now, only one FACE experiment on maize is accomplished applying different water levels. For the rigorous testing of plant growth models and their applicability in climate change studies, we call for datasets that go beyond single criteria (only yield response) and single effects (only elevated CO2 ).
Collapse
Affiliation(s)
- Juliane Kellner
- Research Centre for BioSystems, Land Use and Nutrition (iFZ), Institute for Landscape Ecology and Resources Management, Justus Liebig University Giessen, Giessen, Germany
| | - Tobias Houska
- Research Centre for BioSystems, Land Use and Nutrition (iFZ), Institute for Landscape Ecology and Resources Management, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Lutz Breuer
- Research Centre for BioSystems, Land Use and Nutrition (iFZ), Institute for Landscape Ecology and Resources Management, Justus Liebig University Giessen, Giessen, Germany
| | - Philipp Kraft
- Research Centre for BioSystems, Land Use and Nutrition (iFZ), Institute for Landscape Ecology and Resources Management, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
19
|
Lv X, He Q, Zhou G. Contrasting responses of steppe Stipa ssp. to warming and precipitation variability. Ecol Evol 2019; 9:9061-9075. [PMID: 31463004 PMCID: PMC6706196 DOI: 10.1002/ece3.5452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 11/11/2022] Open
Abstract
Climate change, characterized by warming and precipitation variability, restricted the growth of plants in arid and semiarid areas, and various functional traits are impacted differently. Comparing responses of functional traits to warming and precipitation variability and determining critical water threshold of dominate steppe grasses from Inner Mongolia facilitates the identification and monitoring of water stress effects. A combination of warming (ambient temperature, +1.5°C and +2.0°C) and varying precipitation (-30%, -15%, ambient, +15%, and +30%) manipulation experiments were performed on four Stipa species (S. baicalensis, S. bungeana, S. grandis, and S. breviflora) from Inner Mongolia steppe. The results showed that the functional traits of the four grasses differed in their responses to precipitation, but they shared common sensitive traits (root/shoot ratio, R/S, and specific leaf area; SLA) under ambient temperature condition. Warming increased the response of the four grasses to changing precipitation, and these differences in functional traits resulted in changes to their total biomass, with leaf area, SLA, and R/S making the largest contributions. Critical water thresholds of the four grasses were identified, and warming led to their higher optimum precipitation requirements. The four steppe grasses were able to adapt better to mild drought (summer precipitation decreased by 12%-28%) when warming 1.5°C rather than 2.0°C. These results indicated that if the Paris Agreement to limit global warming to 1.5°C will be accomplished, this will increase the probability for sustained viability of the Stipa steppes in the next 50-100 years.
Collapse
Affiliation(s)
- Xiaomin Lv
- State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
| | - Qijin He
- College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
| | - Guangsheng Zhou
- State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
- Collaborative Innovation Center on Forecast Meteorological Disaster Warning and AssessmentNanjing University of Information Science & TechnologyNanjingChina
| |
Collapse
|
20
|
Maček I, Clark DR, Šibanc N, Moser G, Vodnik D, Müller C, Dumbrell AJ. Impacts of long-term elevated atmospheric CO 2 concentrations on communities of arbuscular mycorrhizal fungi. Mol Ecol 2019; 28:3445-3458. [PMID: 31233651 PMCID: PMC6851679 DOI: 10.1111/mec.15160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 06/04/2019] [Indexed: 01/20/2023]
Abstract
The ecological impacts of long-term elevated atmospheric CO2 (eCO2 ) levels on soil microbiota remain largely unknown. This is particularly true for the arbuscular mycorrhizal (AM) fungi, which form mutualistic associations with over two-thirds of terrestrial plant species and are entirely dependent on their plant hosts for carbon. Here, we use high-resolution amplicon sequencing (Illumina, HiSeq) to quantify the response of AM fungal communities to the longest running (>15 years) free-air carbon dioxide enrichment (FACE) experiment in the Northern Hemisphere (GiFACE); providing the first evaluation of these responses from old-growth (>100 years) semi-natural grasslands subjected to a 20% increase in atmospheric CO2 . eCO2 significantly increased AM fungal richness but had a less-pronounced impact on the composition of their communities. However, while broader changes in community composition were not observed, more subtle responses of specific AM fungal taxa were with populations both increasing and decreasing in abundance in response to eCO2 . Most population-level responses to eCO2 were not consistent through time, with a significant interaction between sampling time and eCO2 treatment being observed. This suggests that the temporal dynamics of AM fungal populations may be disturbed by anthropogenic stressors. As AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in population densities in response to eCO2 may significantly impact terrestrial plant communities and their productivity. Thus, predictions regarding future terrestrial ecosystems must consider changes both aboveground and belowground, but avoid relying on broad-scale community-level responses of soil microbes observed on single occasions.
Collapse
Affiliation(s)
- Irena Maček
- Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT)University of PrimorskaKoperSlovenia
| | - Dave R. Clark
- School of Biological SciencesUniversity of EssexColchesterUK
| | - Nataša Šibanc
- Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT)University of PrimorskaKoperSlovenia
- Slovenian Forestry InstituteLjubljanaSlovenia
| | - Gerald Moser
- Department of Plant EcologyJustus‐Liebig University GiessenGiessenGermany
| | - Dominik Vodnik
- Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
| | - Christoph Müller
- Department of Plant EcologyJustus‐Liebig University GiessenGiessenGermany
- School of Biology and Environmental Science and Earth InstituteUniversity College DublinDublinIreland
| | | |
Collapse
|
21
|
Su Q, Wang X, Ilyas N, Zhang F, Yun Y, Jian C, Peng Y. Combined effects of elevated CO 2 concentration and Wolbachia on Hylyphantes graminicola (Araneae: Linyphiidae). Ecol Evol 2019; 9:7112-7121. [PMID: 31380036 PMCID: PMC6662264 DOI: 10.1002/ece3.5276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 12/23/2022] Open
Abstract
The increasing concentration of carbon dioxide in atmosphere is not only a major cause of global warming, but it also adversely affects the ecological diversity of invertebrates. This study was conducted to evaluate the effect of elevated CO2 concentration (ambient, 400 ppm and high, 800 ppm) and Wolbachia (Wolbachia-infected, W+ and Wolbachia-uninfected, W-) on Hylyphantes graminicola. The total survival rate, developmental duration, carapace width and length, body weight, sex ratio, net reproductive rate, nutrition content, and enzyme activity in H. graminicola were examined under four treatments: W- 400 ppm, W- 800 ppm, W+ 400 ppm, and W+ 800 ppm. Results showed that Wolbachia-infected spiders had significantly decreased the total developmental duration. Different instars showed variations up to some extent, but no obvious effect was found under elevated CO2 concentration. Total survival rate, sex ratio, and net reproductive rate were not affected by elevated CO2 concentration or Wolbachia infection. The carapace width of Wolbachia-uninfected spiders decreased significantly under elevated CO2 concentration, while the width, length and weight were not significantly affected in Wolbachia-infected spiders reared at ambient CO2 concentration. The levels of protein, specific activities of peroxidase, and amylase were significantly increased under elevated CO2 concentration or Wolbachia-infected spiders, while the total amino content was only increased in Wolbachia-infected spiders. Thus, our current finding suggested that elevated CO2 concentration and Wolbachia enhance nutrient contents and enzyme activity of H. graminicola and decrease development duration hence explore the interactive effects of factors which were responsible for reproduction regulation, but it also gives a theoretical direction for spider's protection in such a dynamic environment. Increased activities of enzymes and nutrients caused by Wolbachia infection aids for better survival of H. graminicola under stress.
Collapse
Affiliation(s)
- Qichen Su
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life SciencesHubei UniversityWuhanChina
| | - Xia Wang
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life SciencesHubei UniversityWuhanChina
| | - Naila Ilyas
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life SciencesHubei UniversityWuhanChina
| | - Fan Zhang
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life SciencesHubei UniversityWuhanChina
| | - Yueli Yun
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life SciencesHubei UniversityWuhanChina
| | - Chen Jian
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life SciencesHubei UniversityWuhanChina
| | - Yu Peng
- The State Key Laboratory of Biocatalysis and Enzyme Engineering of China, College of Life SciencesHubei UniversityWuhanChina
| |
Collapse
|
22
|
Song J, Wan S, Piao S, Hui D, Hovenden MJ, Ciais P, Liu Y, Liu Y, Zhong M, Zheng M, Ma G, Zhou Z, Ru J. Elevated CO2
does not stimulate carbon sink in a semi-arid grassland. Ecol Lett 2019; 22:458-468. [DOI: 10.1111/ele.13202] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/17/2018] [Accepted: 10/23/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Jian Song
- International Joint Research Laboratory for Global Change Ecology; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
- College of Life Sciences; Hebei University; Baoding Hebei 071002 China
| | - Shiqiang Wan
- International Joint Research Laboratory for Global Change Ecology; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
- College of Life Sciences; Hebei University; Baoding Hebei 071002 China
| | - Shilong Piao
- Sino-French Institute for Earth System Science; College of Urban and Environmental Sciences; Peking University; Beijing 100871 China
- Key Laboratory of Alpine Ecology and Biodiversity; Institute of Tibetan Plateau Research; Chinese Academy of Sciences; Beijing 100085 China
- Centre for Excellence in Tibetan Earth Science; Chinese Academy of Sciences; Beijing 100085 China
| | - Dafeng Hui
- Department of Biological Sciences; Tennessee State University; Nashville TN 37209 USA
| | - Mark J. Hovenden
- Biological Sciences; School of Natural Sciences; University of Tasmania; Private Bag 55 Hobart Tas 7001 Australia
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement; CEA CNRS UVSQ; Gif-sur-Yvette France
| | - Yongwen Liu
- Key Laboratory of Alpine Ecology and Biodiversity; Institute of Tibetan Plateau Research; Chinese Academy of Sciences; Beijing 100101 China
| | - Yinzhan Liu
- International Joint Research Laboratory for Global Change Ecology; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| | - Mingxing Zhong
- International Joint Research Laboratory for Global Change Ecology; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| | - Mengmei Zheng
- International Joint Research Laboratory for Global Change Ecology; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| | - Gaigai Ma
- International Joint Research Laboratory for Global Change Ecology; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| | - Zhenxing Zhou
- International Joint Research Laboratory for Global Change Ecology; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| | - Jingyi Ru
- International Joint Research Laboratory for Global Change Ecology; School of Life Sciences; Henan University; Kaifeng Henan 475004 China
| |
Collapse
|
23
|
Yuan N, Moser G, Mueller C, Obermeier WA, Bendix J, Luterbacher J. Extreme climatic events down-regulate the grassland biomass response to elevated carbon dioxide. Sci Rep 2018; 8:17758. [PMID: 30531888 PMCID: PMC6288116 DOI: 10.1038/s41598-018-36157-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/16/2018] [Indexed: 11/08/2022] Open
Abstract
Terrestrial ecosystems are considered as carbon sinks that may mitigate the impacts of increased atmospheric CO2 concentration ([CO2]). However, it is not clear what their carbon sink capacity will be under extreme climatic conditions. In this study, we used long-term (1998-2013) data from a C3 grassland Free Air CO2 Enrichment (FACE) experiment in Germany to study the combined effects of elevated [CO2] and extreme climatic events (ECEs) on aboveground biomass production. CO2 fertilization effect (CFE), which represents the promoted plant photosynthesis and water use efficiency under higher [CO2], was quantiffied by calculating the relative differences in biomass between the plots with [CO2] enrichment and the plots with ambient [CO2]. Down-regulated CFEs were found when ECEs occurred during the growing season, and the CFE decreases were statistically significant with p well below 0.05 (t-test). Of all the observed ECEs, the strongest CFE decreases were associated with intensive and prolonged heat waves. These findings suggest that more frequent ECEs in the future are likely to restrict the mitigatory effects of C3 grassland ecosystems, leading to an accelerated warming trend. To reduce the uncertainties of future projections, the atmosphere-vegetation interactions, especially the ECEs effects, are emphasized and need to be better accounted.
Collapse
Affiliation(s)
- Naiming Yuan
- Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus-Liebig University Giessen, Senckenbergstr. 1, 35390, Giessen, Germany.
- CAS Key laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Gerald Moser
- Department of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Christoph Mueller
- Department of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Wolfgang A Obermeier
- Faculty of Geography, Laboratory for Climatology and Remote Sensing, Philipps-University of Marburg, Deutschhausstr. 10, Marburg, Germany
| | - Joerg Bendix
- Faculty of Geography, Laboratory for Climatology and Remote Sensing, Philipps-University of Marburg, Deutschhausstr. 10, Marburg, Germany
| | - Jürg Luterbacher
- Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus-Liebig University Giessen, Senckenbergstr. 1, 35390, Giessen, Germany
- Centre for International Development and Environmental Research, Justus-Liebig University Giessen, 35390, Giessen, Germany
| |
Collapse
|
24
|
Müller C, Moser G. Global Change Biology Introduction-FACEing the future conference. GLOBAL CHANGE BIOLOGY 2018; 24:3873-3874. [PMID: 29978605 DOI: 10.1111/gcb.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/12/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Christoph Müller
- Institute of Plant Ecology, Justus Liebig University Giessen, Giessen, Germany
| | - Gerald Moser
- Institute of Plant Ecology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
25
|
Terrer C, Vicca S, Stocker BD, Hungate BA, Phillips RP, Reich PB, Finzi AC, Prentice IC. Ecosystem responses to elevated CO 2 governed by plant-soil interactions and the cost of nitrogen acquisition. THE NEW PHYTOLOGIST 2018; 217:507-522. [PMID: 29105765 DOI: 10.1111/nph.14872] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/05/2017] [Indexed: 05/11/2023]
Abstract
Contents Summary 507 I. Introduction 507 II. The return on investment approach 508 III. CO2 response spectrum 510 IV. Discussion 516 Acknowledgements 518 References 518 SUMMARY: Land ecosystems sequester on average about a quarter of anthropogenic CO2 emissions. It has been proposed that nitrogen (N) availability will exert an increasingly limiting effect on plants' ability to store additional carbon (C) under rising CO2 , but these mechanisms are not well understood. Here, we review findings from elevated CO2 experiments using a plant economics framework, highlighting how ecosystem responses to elevated CO2 may depend on the costs and benefits of plant interactions with mycorrhizal fungi and symbiotic N-fixing microbes. We found that N-acquisition efficiency is positively correlated with leaf-level photosynthetic capacity and plant growth, and negatively with soil C storage. Plants that associate with ectomycorrhizal fungi and N-fixers may acquire N at a lower cost than plants associated with arbuscular mycorrhizal fungi. However, the additional growth in ectomycorrhizal plants is partly offset by decreases in soil C pools via priming. Collectively, our results indicate that predictive models aimed at quantifying C cycle feedbacks to global change may be improved by treating N as a resource that can be acquired by plants in exchange for energy, with different costs depending on plant interactions with microbial symbionts.
Collapse
Affiliation(s)
- César Terrer
- AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Sara Vicca
- Centre of Excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Benjamin D Stocker
- AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- CREAF, Cerdanyola del Vallès, Catalonia, 08193, Spain
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | | | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN, 55108, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Adrien C Finzi
- Department of Biology, Boston University, Boston, MA, 02215, USA
| | - I Colin Prentice
- AXA Chair Programme in Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| |
Collapse
|
26
|
Brenzinger K, Kujala K, Horn MA, Moser G, Guillet C, Kammann C, Müller C, Braker G. Soil Conditions Rather Than Long-Term Exposure to Elevated CO 2 Affect Soil Microbial Communities Associated with N-Cycling. Front Microbiol 2017; 8:1976. [PMID: 29093701 PMCID: PMC5651278 DOI: 10.3389/fmicb.2017.01976] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
Continuously rising atmospheric CO2 concentrations may lead to an increased transfer of organic C from plants to the soil through rhizodeposition and may affect the interaction between the C- and N-cycle. For instance, fumigation of soils with elevated CO2 (eCO2) concentrations (20% higher compared to current atmospheric concentrations) at the Giessen Free-Air Carbon Dioxide Enrichment (GiFACE) sites resulted in a more than 2-fold increase of long-term N2O emissions and an increase in dissimilatory reduction of nitrate compared to ambient CO2 (aCO2). We hypothesized that the observed differences in soil functioning were based on differences in the abundance and composition of microbial communities in general and especially of those which are responsible for N-transformations in soil. We also expected eCO2 effects on soil parameters, such as on nitrate as previously reported. To explore the impact of long-term eCO2 on soil microbial communities, we applied a molecular approach (qPCR, T-RFLP, and 454 pyrosequencing). Microbial groups were analyzed in soil of three sets of two FACE plots (three replicate samples from each plot), which were fumigated with eCO2 and aCO2, respectively. N-fixers, denitrifiers, archaeal and bacterial ammonia oxidizers, and dissimilatory nitrate reducers producing ammonia were targeted by analysis of functional marker genes, and the overall archaeal community by 16S rRNA genes. Remarkably, soil parameters as well as the abundance and composition of microbial communities in the top soil under eCO2 differed only slightly from soil under aCO2. Wherever differences in microbial community abundance and composition were detected, they were not linked to CO2 level but rather determined by differences in soil parameters (e.g., soil moisture content) due to the localization of the GiFACE sets in the experimental field. We concluded that +20% eCO2 had little to no effect on the overall microbial community involved in N-cycling in the soil but that spatial heterogeneity over extended periods had shaped microbial communities at particular sites in the field. Hence, microbial community composition and abundance alone cannot explain the functional differences leading to higher N2O emissions under eCO2 and future studies should aim at exploring the active members of the soil microbial community.
Collapse
Affiliation(s)
- Kristof Brenzinger
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,Department of Plant Ecology, University of Giessen, Giessen, Germany
| | - Katharina Kujala
- Water Resources and Environmental Engineering Research Unit, University of Oulu, Oulu, Finland
| | - Marcus A Horn
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany.,Institute of Microbiology, Leibniz Universität Hannover, Hannover, Germany
| | - Gerald Moser
- Department of Plant Ecology, University of Giessen, Giessen, Germany
| | - Cécile Guillet
- Department of Plant Ecology, University of Giessen, Giessen, Germany
| | - Claudia Kammann
- Department of Plant Ecology, University of Giessen, Giessen, Germany.,Climate Change Research for Special Crops, Department of Soil Science and Plant Nutrition, Geisenheim University, Geisenheim, Germany
| | - Christoph Müller
- Department of Plant Ecology, University of Giessen, Giessen, Germany.,School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Gesche Braker
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.,University of Kiel, Kiel, Germany
| |
Collapse
|