1
|
Bilgehan A, Şeker Z, Qaoud MT, Özhan G. In vitro investigation of the toxicological mechanisms of Fingolimod (S)-phosphate in HEPG2 cells. Toxicol Res (Camb) 2025; 14:tfaf064. [PMID: 40321693 PMCID: PMC12050031 DOI: 10.1093/toxres/tfaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/31/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Fingolimod (FTY720) was the first sphingosine-1-phosphate (S1P) receptor modulator approved by the US Food and Drug Administration for the treatment of multiple sclerosis. The active form, FTY720 (S)-P, acts as a potent agonist of the S1P receptor, leading to its downregulation on the cell surface, reduced activity, and termination of sphingosine-dependent intracellular signalling. Elevated hepatic enzyme levels, clinically significant liver injury, and acute liver failure have been observed in patients treated with FTY720 (S)-P, which requires additional monitoring. This is the first study to investigate the mechanisms underlying the hepatotoxicity of FTY720 (S)-P and represents an important contribution to elucidating its toxicity mechanisms in the human hepatocellular carcinoma cell line HepG2. Following a 72-h exposure, standard methods were used to evaluate specific targets, including cytotoxic effect potentials, mitochondrial parameters, and changes of the antioxidant enzyme levels. FTY720 (S)-P exposure resulted in time- and dose-dependent decreases in cell viability, mitochondrial membrane potential, and ATP levels, as well as the induction of oxidative stress. The complex toxic profile observed for FTY720 (S)-P is hypothesized to originate from its interaction with sirtuin proteins, particularly SIRT3 and SIRT5. It was also complemented with molecular docking simulations to assess the compound's targeting potential by analysing its interaction profile and binding pose within the active sites of both proteins. The results supported the proposed hypothesis, demonstrating an optimal fitting profile and favourable interaction behaviour within the binding pockets of the SIRT3 and SIRT5 enzymes.
Collapse
Affiliation(s)
- Ayşenur Bilgehan
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University, Fatih, Istanbul 34116, Türkiye
- Institute of Graduate Studies in Health Sciences, Istanbul University, Fatih, Istanbul 34116, Türkiye
| | - Zehra Şeker
- Institute of Graduate Studies in Health Sciences, Istanbul University, Fatih, Istanbul 34116, Türkiye
| | - Mohammed T Qaoud
- Faculty of Pharmacy, Department of Pharmacy, Cyprus International University, Nicosia, Northern Cyprus 99258, Türkiye
| | - Gül Özhan
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University, Fatih, Istanbul 34116, Türkiye
| |
Collapse
|
2
|
Dash UC, Nayak V, Navani HS, Samal RR, Agrawal P, Singh AK, Majhi S, Mogare DG, Duttaroy AK, Jena AB. Understanding the molecular bridges between the drugs and immune cell. Pharmacol Ther 2025; 267:108805. [PMID: 39908660 DOI: 10.1016/j.pharmthera.2025.108805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/11/2025] [Accepted: 01/21/2025] [Indexed: 02/07/2025]
Abstract
The interactions of drugs with the host's immune cells determine the drug's efficacy and adverse effects in patients. Nonsteroidal Anti-Inflammatory Drugs (NSAID), such as corticosteroids, NSAIDs, and immunosuppressants, affect the immune cells and alter the immune response. Molecularly, drugs can interact with immune cells via cell surface receptors, changing the antigen presentation by modifying the co-stimulatory molecules and interacting with the signaling pathways of T cells, B cells, Natural killer (NK) cells, mast cells, basophils, and macrophages. Immunotoxicity, resulting from drug-induced changes in redox status, generation of Reactive Oxygen Species (ROS)/Reactive Nitrogen Species (RNS), and alterations in antioxidant enzymes within immune cells, leads to immunodeficiency. This, in turn, causes allergic reactions, autoimmune diseases, and cytokine release syndrome (CRS). The treatment options should include the evaluation of immune status and utilization of the concept of pharmacogenomics to minimize the chances of immunotoxicity. Many strategies in redox, like targeting the redox pathway or using redox-active agents, are available for the modulation of the immune system and developing drugs. Case studies highlight significant drug-immune cell interactions and patient outcomes, underscoring the importance of understanding these complexities. The future direction focuses on the drugs to deliver antiviral therapy, new approaches to immunomodulation, and modern technologies for increasing antidote effects with reduced toxicity. In conclusion, in-depth knowledge of the interaction between drugs and immune cells is critical to protect the patient from the adverse effects of the drug and improve therapeutic outcomes of the treatment process. This review focuses on the multifaceted interactions of drugs and their consequences at the cellular levels of immune cells.
Collapse
Affiliation(s)
- Umesh Chandra Dash
- School of Biotechnology, Campus 11, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Vinayak Nayak
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India
| | - Hiten Shanker Navani
- Biological Materials Laboratory, CSIR- Central Leather Research Institute, Adyar, Chennai 600020, India
| | - Rashmi Rekha Samal
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751 013, India
| | - Palak Agrawal
- Unit de Microbiologie Structurale, Institut Pasteur, Paris, France
| | - Anup Kumar Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Devraj Ganpat Mogare
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway.
| | - Atala Bihari Jena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| |
Collapse
|
3
|
Sarkar P, Misra S, Ghosal A, Mukherjee S, Ghosh A, Sundaram G. Glucose to lactate shift reprograms CDK-dependent mitotic decisions and its communication with MAPK Sty1 in Schizosaccharomyces pombe. Biol Open 2023; 12:bio060145. [PMID: 37787465 PMCID: PMC10618596 DOI: 10.1242/bio.060145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
Cell cycle regulation in response to biochemical cues is a fundamental event associated with many diseases. The regulation of such responses in complex metabolic environments is poorly understood. This study reveals unknown aspects of the metabolic regulation of cell division in Schizosaccharomyces pombe. We show that changing the carbon source from glucose to lactic acid alters the functions of the cyclin-dependent kinase (CDK) Cdc2 and mitogen-activated protein kinase (MAPK) Sty1, leading to unanticipated outcomes in the behavior and fate of such cells. Functional communication of Cdc2 with Sty1 is known to be an integral part of the cellular response to aberrant Cdc2 activity in S. pombe. Our results show that cross-talk between Cdc2 and Sty1, and the consequent Sty1-dependent regulation of Cdc2 activity, appears to be compromised and the relationship between Cdc2 activity and mitotic timing is also reversed in the presence of lactate. We also show that the biochemical status of cells under these conditions is an important determinant of the altered molecular functions mentioned above as well as the altered behavior of these cells.
Collapse
Affiliation(s)
- Priyanka Sarkar
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | - Susmita Misra
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | - Agamani Ghosal
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | | | - Alok Ghosh
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | | |
Collapse
|
4
|
Immunomodulatory drug fingolimod (FTY720) restricts the growth of opportunistic yeast Candida albicans in vitro and in a mouse candidiasis model. PLoS One 2022; 17:e0278488. [PMID: 36477491 PMCID: PMC9728862 DOI: 10.1371/journal.pone.0278488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Fingolimod (FTY720) is a drug derived from the fungicidal compound myriocin. As it was unclear whether FTY720 has antifungal effects as well, we aimed to characterize its effect on Candida albicans in vitro and in a mouse candidiasis model. First, antifungal susceptibility testing was performed in vitro. Then, a randomized, six-arm, parallel, open-label trial was conducted on 48 mice receiving oral FTY720 (0.3 mg/kg/day), intraperitoneal C. albicans inoculation, or placebo with different combinations and chorological patterns. The outcome measures of the trial included serum concentrations of interleukin-10 and interferon-gamma, absolute lymphocyte counts, and fungal burden values in the mice's livers, kidneys, and vaginas. Broth microdilution assay revealed FTY720's minimum inhibitory concentration (MIC99) to be 0.25 mg/mL for C. albicans. The infected mice treated with FTY720 showed lower fungal burden values than the ones not treated with FTY720 (p<0.05). As expected, the mice treated with FTY720 showed a less-inflammatory immune profile compared to the ones not treated with FTY720. We hypothesize that FTY720 synergizes the host's innate immune functions by inducing the production of reactive oxygen species. Further studies are warranted to unveil the mechanistic explanations of our observations and clarify further aspects of repurposing FTY720 for clinical antifungal usage.
Collapse
|
5
|
Hagihara K, Kanda Y, Ishida K, Satoh R, Takasaki T, Maeda T, Sugiura R. Chemical genetic analysis of FTY720- and Ca 2+ -sensitive mutants reveals a functional connection between FTY720 and membrane trafficking. Genes Cells 2020; 25:637-645. [PMID: 32682352 DOI: 10.1111/gtc.12800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/25/2020] [Accepted: 07/05/2020] [Indexed: 11/27/2022]
Abstract
FTY720, a sphingosine-1-phosphate (S1P) analog, is used as an immune modulator to treat multiple sclerosis. Accumulating evidence has suggested the mode of action of FTY720 independent of an S1P modulator. In fission yeast, FTY720 induces an increase in intracellular Ca2+ and ROS levels. We have previously identified 49 genes of which deletion causes FTY720 sensitivity. Here, we characterized the FTY720-sensitive mutants in terms of their relevance to the Ca2+ homeostasis and identified the 16 FTY720- and Ca2+ -sensitive mutants (fcs mutants). Most of the FTY720-sensitive mutants showed elevated Ca2+ levels and exhibited Ca2+ dysregulation by FTY720 treatment. One of the functional categories among the genes whose deletion renders cells susceptible to FTY720 and Ca2+ include the Golgi/endosomal membrane trafficking. Notably, FTY720, but not phosphorylated FTY720 incapable of inducing Ca2+ increase, inhibited the secretion of acid phosphatase in the wild-type cells. Importantly, secretory defects of the Golgi/endosomal trafficking mutants, Vps45, or Ryh1 deletion, were further exacerbated by FTY720. Our fcs mutant screen also identified the adenylyl cyclase-associated protein Cap1 and a Rictor homolog Ste20, whose deletion markedly exacerbated FTY720-sensitive secretory impairment. Collectively, our data may suggest a synergistic impact of FTY720 combined with secretion perturbation on proliferation and Ca2+ homeostasis.
Collapse
Affiliation(s)
- Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka City, Japan.,Laboratory of Hygienic Science, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Yuki Kanda
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka City, Japan
| | - Kouki Ishida
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka City, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka City, Japan
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka City, Japan
| | - Takuya Maeda
- Laboratory of Hygienic Science, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashi-Osaka City, Japan
| |
Collapse
|
6
|
Vargas-Medrano J, Segura-Ulate I, Yang B, Chinnasamy R, Arterburn JB, Perez RG. FTY720-Mitoxy reduces toxicity associated with MSA-like α-synuclein and oxidative stress by increasing trophic factor expression and myelin protein in OLN-93 oligodendroglia cell cultures. Neuropharmacology 2019; 158:107701. [PMID: 31291595 DOI: 10.1016/j.neuropharm.2019.107701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/17/2022]
Abstract
Multiple system atrophy (MSA) is a fatal demyelinating disorder lacking any disease-modifying therapies. MSA pathology stems from aggregated α-synuclein (aSyn) accumulation in glial cytosolic inclusions of oligodendroglial cell (OLGs), the myelinating cells of brain. In MSA brains and in MSA animal models with aSyn accumulation in OLGs, aberrant expression of brain-derived neurotrophic factor (BDNF) and glial-cell-line-derived neurotrophic factor (GDNF) occur. Nerve growth factor (NGF) expression can also be altered in neurodegenerative diseases. It is unclear if oxidative stress impacts the viability of aSyn-accumulating OLG cells. Here, we show that OLN-93 cells stably expressing human wild type aSyn or the MSA-associated-aSyn-mutants G51D or A53E, are more vulnerable to oxidative stress. In dose response studies we found that OLN-93 cells treated 48 h with 160 nM FTY720 or our new non-immunosuppressive FTY720-C2 or FTY720-Mitoxy derivatives sustained normal viability. Also, FTY720, FTY720-C2, and FTY720-Mitoxy all stimulated NGF expression at 24 h. However only FTY720-Mitoxy also increased BDNF and GDNF mRNA at 24 h, an effect paralleled by increases in histone 3 acetylation and ERK1/2 phosphorylation. Myelin associated glycoprotein (MAG) levels were also increased in OLN-93 cells after 48 h treatment with FTY720-Mitoxy. FTY720, FTY720-C2, and FTY720-Mitoxy all prevented oxidative-stress-associated-cell-death of OLN-93 cells that lack any aSyn expression. However, only FTY720-Mitoxy protected MSA-like aSyn-expressing-OLN-93-cells against oxidative-cell-death. These data identify potent protective effects for FTY720-Mitoxy with regard to trophic factors as well as MAG expression by OLG cells. Testing of FTY720-Mitoxy in mice is thus a judicious next step for neuropharmacological preclinical development.
Collapse
Affiliation(s)
- Javier Vargas-Medrano
- Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, Paul L Foster School of Medicine, El Paso, TX, 79905, USA
| | - Ismael Segura-Ulate
- Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, Paul L Foster School of Medicine, El Paso, TX, 79905, USA
| | - Barbara Yang
- Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, Paul L Foster School of Medicine, El Paso, TX, 79905, USA
| | - Ramesh Chinnasamy
- Department of Chemistry & Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jeffrey B Arterburn
- Department of Chemistry & Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Ruth G Perez
- Department of Molecular and Translational Medicine, Graduate School of Biomedical Sciences, Center of Emphasis in Neurosciences, Texas Tech University Health Sciences Center El Paso, Paul L Foster School of Medicine, El Paso, TX, 79905, USA.
| |
Collapse
|
7
|
More than Just an Immunosuppressant: The Emerging Role of FTY720 as a Novel Inducer of ROS and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4397159. [PMID: 29785244 PMCID: PMC5896217 DOI: 10.1155/2018/4397159] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 02/28/2018] [Indexed: 02/03/2023]
Abstract
Fingolimod hydrochloride (FTY720) is a first-in-class of sphingosine-1-phosphate (S1P) receptor modulator approved to treat multiple sclerosis by its phosphorylated form (FTY720-P). Recently, a novel role of FTY720 as a potential anticancer drug has emerged. One of the anticancer mechanisms of FTY720 involves the induction of reactive oxygen species (ROS) and subsequent apoptosis, which is largely independent of its property as an S1P modulator. ROS have been considered as a double-edged sword in tumor initiation/progression. Intriguingly, prooxidant therapies have attracted much attention due to its efficacy in cancer treatment. These strategies include diverse chemotherapeutic agents and molecular targeted drugs such as sulfasalazine which inhibits the CD44v-xCT (cystine transporter) axis. In this review, we introduce our recent discoveries using a chemical genomics approach to uncover a signaling network relevant to FTY720-mediated ROS signaling and apoptosis, thereby proposing new potential targets for combination therapy as a means to enhance the antitumor efficacy of FTY720 as a ROS generator. We extend our knowledge by summarizing various measures targeting the vulnerability of cancer cells' defense mechanisms against oxidative stress. Future directions that may lead to the best use of FTY720 and ROS-targeted strategies as a promising cancer treatment are also discussed.
Collapse
|
8
|
Hagihara K, Kinoshita K, Ishida K, Hojo S, Kameoka Y, Satoh R, Takasaki T, Sugiura R. A genome-wide screen for FTY720-sensitive mutants reveals genes required for ROS homeostasis. MICROBIAL CELL 2017; 4:390-401. [PMID: 29234668 PMCID: PMC5722642 DOI: 10.15698/mic2017.12.601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fingolimod hydrochloride (FTY720), a sphingosine-1-phosphate (S1P) analogue, is an approved immune modulator for the treatment of multiple sclerosis (MS). Notably, in addition to its well-known mode of action as an S1P modulator, accumulating evidence suggests that FTY720 induces apoptosis in various cancer cells via reactive oxygen species (ROS) generation. Although the involvement of multiple signaling molecules, such as JNK (Jun N-terminal kinase), Akt (alpha serine/threonine-protein kinase) and Sphk has been reported, the exact mechanisms how FTY720 induces cell growth inhibition and the functional relationship between FTY720 and these signaling pathways remain elusive. Our previous reports using the fission yeast Schizosaccharomyces pombe as a model system to elucidate FTY720-mediated signaling pathways revealed that FTY720 induces an increase in intracellular Ca2+ concentrations and ROS generation, which resulted in the activation of the transcriptional responses downstream of Ca2+/calcineurin signaling and stress-activated MAPK signaling, respectively. Here, we performed a genome-wide screening for genes whose deletion induces FTY720-sensitive growth in S. pombe and identified 49 genes. These gene products are related to the biological processes involved in metabolic processes, transport, transcription, translation, chromatin organization, cytoskeleton organization and intracellular signal transduction. Notably, most of the FTY720-sensitive deletion cells exhibited NAC-remedial FTY720 sensitivities and dysregulated ROS homeostasis. Our results revealed a novel gene network involving ROS homeostasis and the possible mechanisms of the FTY720 toxicity.
Collapse
Affiliation(s)
- Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Kanako Kinoshita
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Kouki Ishida
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Shihomi Hojo
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Yoshinori Kameoka
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka City, Osaka 577-8502, Japan
| |
Collapse
|
9
|
The Evaluation of Oxidative Stress Parameters in Serum Patients with Relapsing-Remitting Multiple Sclerosis Treated with II-Line Immunomodulatory Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9625806. [PMID: 29138683 PMCID: PMC5613460 DOI: 10.1155/2017/9625806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/30/2017] [Accepted: 08/20/2017] [Indexed: 11/20/2022]
Abstract
Objectives The assessment of oxidative stress (OS) in serum relapsing-remitting multiple sclerosis patients treated with II-line immunomodulatory therapy (fingolimod, natalizumab) compared to newly diagnosed patients (de novo group) treated with interferon (IFN) beta and controls. The relationship between OS parameters and gender, age, disease duration, Expanded Disability Status Scale, annualized relapse rate, MRI lesions in patients treated with II-line. Materials and Methods One hundred and twenty-one patients with RRMS were enrolled in the study. Patients were divided into groups: de novo group, IFN, fingolimod (FG), natalizumab (NT), and controls. Lipid hydroperoxides (LHP), malondialdehyde (MDA), lipofuscin (LPS), and total oxidative status (TOS) were determined. Results LHP, MDA, and TOS were lower in NT and FG groups compared to the de novo group. Levels of OS were different between NT and FG patients and the IFN group. Women treated with FG and NT had lower MDA, LPH, and TOS than women who were not treated while in men only LPH was lowered. Positive correlations were found between MDA, LHP, TOS, and ARR in the NT group. Conclusion The II-line immunomodulatory treatment decreased OS particularly among women. No difference in OS levels was observed between II-line therapy and IFN beta.
Collapse
|