1
|
Yoshimoto R, Nakayama Y, Nomura I, Yamamoto I, Nakagawa Y, Tanaka S, Kurihara M, Suzuki Y, Kobayashi T, Kozuka-Hata H, Oyama M, Mito M, Iwasaki S, Yamazaki T, Hirose T, Araki K, Nakagawa S. 4.5SH RNA counteracts deleterious exonization of SINE B1 in mice. Mol Cell 2023; 83:4479-4493.e6. [PMID: 38096826 DOI: 10.1016/j.molcel.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
4.5SH RNA is a highly abundant, small rodent-specific noncoding RNA that localizes to nuclear speckles enriched in pre-mRNA-splicing regulators. To investigate the physiological functions of 4.5SH RNA, we have created mutant mice that lack the expression of 4.5SH RNA. The mutant mice exhibited embryonic lethality, suggesting that 4.5SH RNA is an essential species-specific noncoding RNA in mice. RNA-sequencing analyses revealed that 4.5SH RNA protects the transcriptome from abnormal exonizations of the antisense insertions of the retrotransposon SINE B1 (asB1), which would otherwise introduce deleterious premature stop codons or frameshift mutations. Mechanistically, 4.5SH RNA base pairs with complementary asB1-containing exons via the target recognition region and recruits effector proteins including Hnrnpm via its 5' stem loop region. The modular organization of 4.5SH RNA allows us to engineer a programmable splicing regulator to induce the skipping of target exons of interest. Our results also suggest the general existence of splicing regulatory noncoding RNAs.
Collapse
Affiliation(s)
- Rei Yoshimoto
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan.
| | - Yuta Nakayama
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ikuko Nomura
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ikuko Yamamoto
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yumeka Nakagawa
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan
| | - Shigeyuki Tanaka
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan
| | - Misuzu Kurihara
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yu Suzuki
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Tomohiro Yamazaki
- RNA Biofunction Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuro Hirose
- RNA Biofunction Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
2
|
Stasenko DV, Tatosyan KA, Borodulina OR, Kramerov DA. Nucleotide Context Can Modulate Promoter Strength in Genes Transcribed by RNA Polymerase III. Genes (Basel) 2023; 14:802. [PMID: 37107560 PMCID: PMC10137851 DOI: 10.3390/genes14040802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The small nuclear RNAs 4.5SH and 4.5SI were characterized only in mouse-like rodents; their genes originate from 7SL RNA and tRNA, respectively. Similar to many genes transcribed by RNA polymerase III (pol III), the genes of 4.5SH and 4.5SI RNAs include boxes A and B, forming an intergenic pol III-directed promoter. In addition, their 5'-flanking sequences have TATA-like boxes at position -31/-24, also required for efficient transcription. The patterns of the three boxes notably differ in the 4.5SH and 4.5SI RNA genes. The A, B, and TATA-like boxes were replaced in the 4.5SH RNA gene with the corresponding boxes in the 4.5SI RNA gene to evaluate their effect on the transcription of transfected constructs in HeLa cells. Simultaneous replacement of all three boxes decreased the transcription level by 40%, which indicates decreased promoter activity in a foreign gene. We developed a new approach to compare the promoter strength based on the competition of two co-transfected gene constructs when the proportion between the constructs modulates their relative activity. This method demonstrated that the promoter activity of 4.5SI is 12 times that of 4.5SH. Unexpectedly, the replacement of all three boxes of the weak 4.5SH promoter with those of the strong 4.5SI gene significantly reduced, rather than enhanced, the promoter activity. Thus, the strength of a pol III-directed promoter can depend on the nucleotide environment of the gene.
Collapse
Affiliation(s)
| | | | | | - Dmitri A. Kramerov
- Laboratory of Eukaryotic Genome Evolution, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Yamada A, Toya H, Tanahashi M, Kurihara M, Mito M, Iwasaki S, Kurosaka S, Takumi T, Fox A, Kawamura Y, Miura K, Nakagawa S. Species-specific formation of paraspeckles in intestinal epithelium revealed by characterization of NEAT1 in naked mole-rat. RNA (NEW YORK, N.Y.) 2022; 28:1128-1143. [PMID: 35654483 PMCID: PMC9297846 DOI: 10.1261/rna.079135.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Paraspeckles are mammalian-specific nuclear bodies built on the long noncoding RNA NEAT1_2 The molecular mechanisms of paraspeckle formation have been mainly studied using human or mouse cells, and it is not known if the same molecular components are involved in the formation of paraspeckles in other mammalian species. We thus investigated the expression pattern of NEAT1_2 in naked mole-rats (nNEAT1_2), which exhibit extreme longevity and lower susceptibility to cancer. In the intestine, nNEAT1_2 is widely expressed along the entire intestinal epithelium, which is different from the expression of mNeat1_2 that is restricted to the cells of the distal tip in mice. Notably, the expression of FUS, a FET family RNA binding protein, essential for the formation of paraspeckles both in humans and mice, was absent in the distal part of the intestinal epithelium in naked mole-rats. Instead, mRNAs of other FET family proteins EWSR1 and TAF15 were expressed in the distal region. Exogenous expression of these proteins in Fus-deficient murine embryonic fibroblast cells rescued the formation of paraspeckles. These observations suggest that nNEAT1_2 recruits a different set of RNA binding proteins in a cell type-specific manner during the formation of paraspeckles in different organisms.
Collapse
Affiliation(s)
- Akihiro Yamada
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hikaru Toya
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Mayuko Tanahashi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Misuzu Kurihara
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | | | - Toru Takumi
- RIKEN Brain Science Institute, Saitama 351-0198, Japan
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe 670-0017, Japan
| | - Archa Fox
- School of Human Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kyoko Miura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
4
|
Takahashi O, Tanahashi M, Yokoi S, Kaneko M, Yanaka K, Nakagawa S, Maita H. The cell type-specific ER membrane protein UGS148 is not essential in mice. Genes Cells 2021; 27:43-60. [PMID: 34897904 DOI: 10.1111/gtc.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022]
Abstract
Genomes of higher eukaryotes encode many uncharacterized proteins, and the functions of these proteins cannot be predicted from the primary sequences due to a lack of conserved functional domains. In this study, we focused on a poorly characterized protein UGS148 that is highly expressed in a specialized cell type called tanycytes that line the ventral wall of the third ventricle in the hypothalamus. Immunostaining of UGS148 revealed the fine morphology of tanycytes with highly branched apical ER membranes. Immunoprecipitation revealed that UGS148 associated with mitochondrial ATPase at least in vitro, and ER and mitochondrial signals occasionally overlapped in tanycytes. Mutant mice lacking UGS148 did not exhibit overt phenotypes, suggesting that UGS148 was not essential in mice reared under normal laboratory conditions. We also found that RNA probes that were predicted to uniquely detect UGS148 mRNA cross-reacted with uncharacterized RNAs, highlighting the importance of experimental validation of the specificity of probes during the hybridization-based study of RNA localization.
Collapse
Affiliation(s)
- Osamu Takahashi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mayuko Tanahashi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Saori Yokoi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kaori Yanaka
- Liver Cancer Prevention Research Unit, RIKEN, Wako, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Maita
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Tatosyan KA, Stasenko DV, Koval AP, Gogolevskaya IK, Kramerov DA. TATA-Like Boxes in RNA Polymerase III Promoters: Requirements for Nucleotide Sequences. Int J Mol Sci 2020; 21:ijms21103706. [PMID: 32466110 PMCID: PMC7279448 DOI: 10.3390/ijms21103706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023] Open
Abstract
tRNA and some other non-coding RNA genes are transcribed by RNA polymerase III (pol III), due to the presence of intragenic promoter, consisting of boxes A and B spaced by 30–40 bp. Such pol III promoters, called type 2, are also intrinsic to Short Interspersed Elements (SINEs). The contribution of 5′-flanking sequences to the transcription efficiency of genes containing type 2 promoters is still studied insufficiently. Here, we studied this issue, focusing on the genes of two small non-coding RNAs (4.5SH and 4.5SI), as well as B1 and B2 SINEs from the mouse genome. We found that the regions from position −31 to −24 may significantly influence the transcription of genes and SINEs. We studied the influence of nucleotide substitutions in these sites, representing TATA-like boxes, on transcription of 4.5SH and 4.5SI RNA genes. As a rule, the substitutions of A and T to G or C reduced the transcription level, although the replacement of C with A also lowered it. In 4.5SH gene, five distal nucleotides of −31/−24 box (TTCAAGTA) appeared to be the most important, while in the box −31/−24 of 4.5SI gene (CTACATGA), all nucleotides, except for the first one, contributed significantly to the transcription efficiency. Random sequences occurring at positions −31/−24 upstream of SINE copies integrated into genome, promoted their transcription with different efficacy. In the 5′-flanking sequences of 4.5SH and 4.5SI RNA genes, the recognition sites of CREB, C/EBP, and Sp1 factors were found, and their deletion decreased the transcription.
Collapse
|
6
|
Tatosyan KA, Koval AP, Kramerov DA. Small Noncoding 4.5SH and 4.5SI RNAs and Their Binding to Proteins. Mol Biol 2018. [DOI: 10.1134/s002689331806016x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Wegener M, Müller-McNicoll M. Nuclear retention of mRNAs - quality control, gene regulation and human disease. Semin Cell Dev Biol 2017; 79:131-142. [PMID: 29102717 DOI: 10.1016/j.semcdb.2017.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 12/21/2022]
Abstract
Nuclear retention of incompletely spliced or mature mRNAs emerges as a novel, previously underappreciated layer of gene regulation, which enables the cell to rapidly respond to stress, viral infection, differentiation cues or changing environmental conditions. Focusing on mammalian cells, we discuss recent insights into the mechanisms and functions of nuclear retention, describe retention-promoting features in protein-coding transcripts and propose mechanisms for their regulated release into the cytoplasm. Moreover, we discuss examples of how aberrant nuclear retention of mRNAs may lead to human diseases.
Collapse
Affiliation(s)
- Marius Wegener
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany
| | - Michaela Müller-McNicoll
- RNA Regulation Group, Cluster of Excellence 'Macromolecular Complexes', Goethe University Frankfurt, Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 13, 60438 Frankfurt/Main, Germany.
| |
Collapse
|
8
|
Karijolich J, Zhao Y, Alla R, Glaunsinger B. Genome-wide mapping of infection-induced SINE RNAs reveals a role in selective mRNA export. Nucleic Acids Res 2017; 45:6194-6208. [PMID: 28334904 PMCID: PMC5449642 DOI: 10.1093/nar/gkx180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
Short interspersed nuclear elements (SINEs) are retrotransposons evolutionarily derived from endogenous RNA Polymerase III RNAs. Though SINE elements have undergone exaptation into gene regulatory elements, how transcribed SINE RNA impacts transcriptional and post-transcriptional regulation is largely unknown. This is partly due to a lack of information regarding which of the loci have transcriptional potential. Here, we present an approach (short interspersed nuclear element sequencing, SINE-seq), which selectively profiles RNA Polymerase III-derived SINE RNA, thereby identifying transcriptionally active SINE loci. Applying SINE-seq to monitor murine B2 SINE expression during a gammaherpesvirus infection revealed transcription from 28 270 SINE loci, with ∼50% of active SINE elements residing within annotated RNA Polymerase II loci. Furthermore, B2 RNA can form intermolecular RNA–RNA interactions with complementary mRNAs, leading to nuclear retention of the targeted mRNA via a mechanism involving p54nrb. These findings illuminate a pathway for the selective regulation of mRNA export during stress via retrotransposon activation.
Collapse
Affiliation(s)
- John Karijolich
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3370, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3370, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-2363, USA
| | - Yang Zhao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-2363, USA
| | - Ravi Alla
- California Institute for Quantitative Biology, University of California, Berkeley, CA 94720-3370, USA
| | - Britt Glaunsinger
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3370, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3370, USA.,California Institute for Quantitative Biology, University of California, Berkeley, CA 94720-3370, USA
| |
Collapse
|
9
|
Tatosyan KA, Koval AP, Gogolevskaya IK, Kramerov DA. 4.5SI and 4.5SH RNAs: Expression in various rodent organs and abundance and distribution in the cell. Mol Biol 2017. [DOI: 10.1134/s0026893317010174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Tajaddod M, Tanzer A, Licht K, Wolfinger MT, Badelt S, Huber F, Pusch O, Schopoff S, Janisiw M, Hofacker I, Jantsch MF. Transcriptome-wide effects of inverted SINEs on gene expression and their impact on RNA polymerase II activity. Genome Biol 2016; 17:220. [PMID: 27782844 PMCID: PMC5080714 DOI: 10.1186/s13059-016-1083-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/10/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Short interspersed elements (SINEs) represent the most abundant group of non-long-terminal repeat transposable elements in mammalian genomes. In primates, Alu elements are the most prominent and homogenous representatives of SINEs. Due to their frequent insertion within or close to coding regions, SINEs have been suggested to play a crucial role during genome evolution. Moreover, Alu elements within mRNAs have also been reported to control gene expression at different levels. RESULTS Here, we undertake a genome-wide analysis of insertion patterns of human Alus within transcribed portions of the genome. Multiple, nearby insertions of SINEs within one transcript are more abundant in tandem orientation than in inverted orientation. Indeed, analysis of transcriptome-wide expression levels of 15 ENCODE cell lines suggests a cis-repressive effect of inverted Alu elements on gene expression. Using reporter assays, we show that the negative effect of inverted SINEs on gene expression is independent of known sensors of double-stranded RNAs. Instead, transcriptional elongation seems impaired, leading to reduced mRNA levels. CONCLUSIONS Our study suggests that there is a bias against multiple SINE insertions that can promote intramolecular base pairing within a transcript. Moreover, at a genome-wide level, mRNAs harboring inverted SINEs are less expressed than mRNAs harboring single or tandemly arranged SINEs. Finally, we demonstrate a novel mechanism by which inverted SINEs can impact on gene expression by interfering with RNA polymerase II.
Collapse
Affiliation(s)
- Mansoureh Tajaddod
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9/5, Vienna, A-1030, Austria
| | - Andrea Tanzer
- Institute for Theoretical Chemistry, University of Vienna, Währinger Strasse 17, Vienna, A-1090, Austria
| | - Konstantin Licht
- Department of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, A-1090, Austria
| | - Michael T Wolfinger
- Department of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, A-1090, Austria
- Institute for Theoretical Chemistry, University of Vienna, Währinger Strasse 17, Vienna, A-1090, Austria
| | - Stefan Badelt
- Institute for Theoretical Chemistry, University of Vienna, Währinger Strasse 17, Vienna, A-1090, Austria
| | - Florian Huber
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9/5, Vienna, A-1030, Austria
- Present address: Center for molecular biology of the University Heidelberg, Im Neuenheimer Feld 282, Heidelberg, D-69120, Germany
| | - Oliver Pusch
- Department of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, A-1090, Austria
| | - Sandy Schopoff
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9/5, Vienna, A-1030, Austria
| | - Michael Janisiw
- Department of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, A-1090, Austria
| | - Ivo Hofacker
- Institute for Theoretical Chemistry, University of Vienna, Währinger Strasse 17, Vienna, A-1090, Austria
| | - Michael F Jantsch
- Department of Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, A-1090, Austria.
- Department of Cell and Developmental Biology, Medical University of Vienna, Center of Anatomy and Cell Biology, Schwarzspanierstrasse 17, Vienna, A-1090, Austria.
| |
Collapse
|
11
|
Tatosyan KA, Kramerov DA. Heat shock increases lifetime of a small RNA and induces its accumulation in cells. Gene 2016; 587:33-41. [PMID: 27085482 DOI: 10.1016/j.gene.2016.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 01/06/2023]
Abstract
4.5SH and 4.5SI RNA are two abundant small non-coding RNAs specific for several related rodent families including Muridae. These RNAs have a number of common characteristics such as the short length (about 100nt), transcription by RNA polymerase III, and origin from Short Interspersed Elements (SINEs). However, their stabilities in cells substantially differ: the half-life of 4.5SH RNA is about 20min, while that of 4.5SI RNA is 22h. Here we studied the influence of cell stress such as heat shock or viral infection on these two RNAs. We found that the level of 4.5SI RNA did not change in stressed cells; whereas heat shock increased the abundance of 4.5SH RNA 3.2-10.5 times in different cell lines; and viral infection, 5 times. Due to the significant difference in the turnover rates of these two RNAs, a similar activation of their transcription by heat shock increases the level of the short-lived 4.5SH RNA and has minor effect on the level of the long-lived 4.5SI RNA. In addition, the accumulation of 4.5SH RNA results not only from the induction of its transcription but also from a substantial retardation of its decay. To our knowledge, it is the first example of a short-lived non-coding RNA whose elongated lifetime contributes significantly to its accumulation in stressed cells.
Collapse
Affiliation(s)
- Karina A Tatosyan
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Dmitri A Kramerov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russian Federation.
| |
Collapse
|