1
|
Cyclization of Single-Chain Fv Antibodies Markedly Suppressed Their Characteristic Aggregation Mediated by Inter-Chain VH-VL Interactions. Molecules 2019; 24:molecules24142620. [PMID: 31323851 PMCID: PMC6681014 DOI: 10.3390/molecules24142620] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
Single-chain Fv (scFv) antibodies are recombinant proteins in which the variable regions of the heavy chain (VH) and light chain (VL) are connected by a short flexible polypeptide linker. ScFvs have the advantages of easy genetic manipulation and low-cost production using Escherichia coli compared with monoclonal antibodies, and are thus expected to be utilized as next-generation medical antibodies. However, the practical use of scFvs has been limited due to low homogeneity caused by their aggregation propensity mediated by inter-chain VH-VL interactions. Because the interactions between the VH and VL domains of antibodies are generally weak, individual scFvs are assumed to be in equilibrium between a closed state and an open state, in which the VH and VL domains are assembled and disassembled, respectively. This dynamic feature of scFvs triggers the formation of dimer, trimer, and larger aggregates caused by the inter-chain VH-VL interactions. To overcome this problem, the N-terminus and C-terminus were herein connected by sortase A-mediated ligation to produce a cyclic scFv. Open-closed dynamics and aggregation were markedly suppressed in the cyclic scFv, as judged from dynamic light scattering and high-speed atomic force microscopy analyses. Surface plasmon resonance and differential scanning fluorometry analysis revealed that neither the affinity for antigen nor the thermal stability was disrupted by the scFv cyclization. Generality was confirmed by applying the present method to several scFv proteins. Based on these results, cyclic scFvs are expected to be widely utilized in industrial and therapeutic applications.
Collapse
|
2
|
Sanfelice D, Koss H, Bunney TD, Thompson GS, Farrell B, Katan M, Breeze AL. NMR backbone assignments of the tyrosine kinase domain of human fibroblast growth factor receptor 3 in apo state and in complex with inhibitor PD173074. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:231-235. [PMID: 29582384 PMCID: PMC6132846 DOI: 10.1007/s12104-018-9814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/20/2018] [Indexed: 05/03/2023]
Abstract
Fibroblast growth factors receptors (FGFR) are transmembrane protein tyrosine kinases involved in many cellular process, including growth, differentiation and angiogenesis. Dysregulation of FGFR enzymatic activity is associated with developmental disorders and cancers; therefore FGFRs have become attractive targets for drug discovery, with a number of agents in late-stage clinical trials. Here, we present the backbone resonance assignments of FGFR3 tyrosine kinase domain in the ligand-free form and in complex with the canonical FGFR kinase inhibitor PD173074. Analysis of chemical shift changes upon inhibitor binding highlights a characteristic pattern of allosteric network perturbations that is of relevance for future drug discovery activities aimed at development of conformationally-selective FGFR inhibitors.
Collapse
Affiliation(s)
- Domenico Sanfelice
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London, WC1E 6BT, UK.
| | - Hans Koss
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London, WC1E 6BT, UK
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London, WC1E 6BT, UK
| | - Gary S Thompson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Wellcome Trust Biomolecular NMR Facility, School of Biosciences, University of Kent, Canterbury, CT2 7NZ, UK
| | - Brendan Farrell
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower St, London, WC1E 6BT, UK
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
3
|
Yoza K, Himeno R, Amano S, Kobashigawa Y, Amemiya S, Fukuda N, Kumeta H, Morioka H, Inagaki F. Biophysical characterization of drug-resistant mutants of fibroblast growth factor receptor 1. Genes Cells 2016; 21:1049-1058. [PMID: 27558949 DOI: 10.1111/gtc.12405] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/25/2016] [Indexed: 12/16/2022]
Abstract
Over-expression and aberrant activation of tyrosine kinases occur frequently in human cancers. Various tyrosine kinase inhibitors (TKIs) are under clinical use, but acquisition of resistance to these drugs is a major problem. Here, we studied the interaction between two drug-resistant mutants of fibroblast growth factor receptor 1 (FGFR1), N546K and V561M, and four ATP-competitive inhibitors, ponatinib, dovitinib, PD173074 and BGJ-398. Among these protein-drug systems, the only marked reduction in affinity was that of PD173074 for the V561M mutant. We also examined the interaction of these FGFR1 variants to AMP-PNP, a nonhydrolyzable analogue of ATP, and showed that N546K showed increased affinity for the ATP analogue as compared with the wild type. These findings will help to clarify the mechanism of drug resistance in mutant tyrosine kinases.
Collapse
Affiliation(s)
- Kaito Yoza
- Department of Analytical and Biophysical Chemistry, School of Pharmacy, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Rika Himeno
- Department of Analytical and Biophysical Chemistry, School of Pharmacy, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Shinjiro Amano
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Yoshihiro Kobashigawa
- Department of Analytical and Biophysical Chemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan.
| | - Shun Amemiya
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Natsuki Fukuda
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Hiroyuki Kumeta
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Fuyuhiko Inagaki
- Department of Structural Biology, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan
| |
Collapse
|