1
|
Junqueira Alves C, Hannah T, Sadia S, Kolsteeg C, Dixon A, Wiener RJ, Nguyen H, Tipping MJ, Silva Ladeira J, Fernandes da Costa Franklin P, de Paula Dutra de Nigro N, Alves Dias R, Zabala Capriles PV, Rodrigues Furtado de Mendonça JP, Slesinger PA, Costa KD, Zou H, Friedel RH. Invasion of glioma cells through confined space requires membrane tension regulation and mechano-electrical coupling via Plexin-B2. Nat Commun 2025; 16:272. [PMID: 39747004 PMCID: PMC11697315 DOI: 10.1038/s41467-024-55056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Glioblastoma (GBM) is a malignant brain tumor with diffuse infiltration. Here, we demonstrate how GBM cells usurp guidance receptor Plexin-B2 for confined migration through restricted space. Using live-cell imaging to track GBM cells negotiating microchannels, we reveal endocytic vesicle accumulation at cell front and filamentous actin assembly at cell rear in a polarized manner. These processes are interconnected and require Plexin-B2 signaling. We further show that Plexin-B2 governs membrane tension and other membrane features such as endocytosis, phospholipid composition, and inner leaflet surface charge, thus providing biophysical mechanisms by which Plexin-B2 promotes GBM invasion. Together, our studies unveil how GBM cells regulate membrane tension and mechano-electrical coupling to adapt to physical constraints and achieve polarized confined migration.
Collapse
Affiliation(s)
- Chrystian Junqueira Alves
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Theodore Hannah
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sita Sadia
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christy Kolsteeg
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Angela Dixon
- Department of Biology, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert J Wiener
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ha Nguyen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Murray J Tipping
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Júlia Silva Ladeira
- Department of Computer Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Rodrigo Alves Dias
- Department of Physics, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | | | - Paul A Slesinger
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin D Costa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
2
|
Suzuki M, Takagi S. An analysis of semaphorin-mediated cellular interactions in the Caenorhabditis elegans epidermis using the IR-LEGO single-cell gene induction system. Dev Growth Differ 2024; 66:308-319. [PMID: 38761018 PMCID: PMC11457500 DOI: 10.1111/dgd.12925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/20/2024]
Abstract
One of the major functions of the semaphorin signaling system is the regulation of cell shape. In the nematode Caenorhabditis elegans, membrane-bound semaphorins SMP-1/2 (SMPs) regulate the morphology of epidermal cells via their receptor plexin, PLX-1. In the larval male tail of the SMP-PLX-1 signaling mutants, the border between two epidermal cells, R1.p and R2.p, is displaced anteriorly, resulting in the anterior displacement of the anterior-most ray, ray 1, in the adult male. To elucidate how the intercellular signaling mediated by SMPs regulates the position of the intercellular border, we performed mosaic gene expression analyses by using infrared laser-evoked gene operator (IR-LEGO). We show that PLX-1 expressed in R1.p and SMP-1 expressed in R2.p are required for the proper positioning of ray 1. The result suggests that SMP signaling promotes extension, rather than retraction, of R1.p. This is in contrast to a previous finding that SMPs mediate inhibition of cell extension of vulval precursor cells, another group of epidermal cells of C. elegans, indicating the context dependence of cell shape control via the semaphorin signaling system.
Collapse
Affiliation(s)
- Motoshi Suzuki
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| | - Shin Takagi
- Division of Biological Science, Graduate School of ScienceNagoya UniversityNagoyaJapan
| |
Collapse
|
3
|
Junqueira Alves C, Hannah T, Sadia S, Kolsteeg C, Dixon A, Wiener RJ, Nguyen H, Tipping MJ, Ladeira JS, Franklin PFDC, Dutra de Nigro NDP, Dias RA, Zabala Capriles PV, Rodrigues Furtado de Mendonça JP, Slesinger P, Costa K, Zou H, Friedel RH. Invasion of glioma cells through confined space requires membrane tension regulation and mechano-electrical coupling via Plexin-B2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573660. [PMID: 38313256 PMCID: PMC10836082 DOI: 10.1101/2024.01.02.573660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Glioblastoma (GBM) is a malignant brain tumor with uncontrolled invasive growth. Here, we demonstrate how GBM cells usurp guidance receptor Plexin-B2 to gain biomechanical plasticity for polarized migration through confined space. Using live-cell imaging to track GBM cells negotiating microchannels, we reveal active endocytosis at cell front and filamentous actin assembly at rear to propel GBM cells through constrictions. These two processes are interconnected and governed by Plexin-B2 that orchestrates cortical actin and membrane tension, shown by biomechanical assays. Molecular dynamics simulations predict that balanced membrane and actin tension are required for optimal migratory velocity and consistency. Furthermore, Plexin-B2 mechanosensitive function requires a bendable extracellular ring structure and affects membrane internalization, permeability, phospholipid composition, as well as inner membrane surface charge. Together, our studies unveil a key element of membrane tension and mechanoelectrical coupling via Plexin-B2 that enables GBM cells to adapt to physical constraints and achieve polarized confined migration.
Collapse
|
4
|
Dos Santos GB, da Silva ED, Kitano ES, Battistella ME, Monteiro KM, de Lima JC, Ferreira HB, Serrano SMDT, Zaha A. Proteomic profiling of hydatid fluid from pulmonary cystic echinococcosis. Parasit Vectors 2022; 15:99. [PMID: 35313982 PMCID: PMC8935821 DOI: 10.1186/s13071-022-05232-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Most cystic echinococcosis cases in Southern Brazil are caused by Echinococcus granulosus and Echinococcus ortleppi. Proteomic studies of helminths have increased our knowledge about the molecular survival strategies that are used by parasites. Here, we surveyed the protein content of the hydatid fluid compartment in E. granulosus and E. ortleppi pulmonary bovine cysts to better describe and compare their molecular arsenal at the host-parasite interface. METHODS Hydatid fluid samples from three isolates of each species were analyzed using mass spectrometry-based proteomics (LC-MS/MS). In silico functional analyses of the identified proteins were performed to examine parasite survival strategies. RESULTS The identified hydatid fluid protein profiles showed a predominance of parasite proteins compared to host proteins that infiltrate the cysts. We identified 280 parasitic proteins from E. granulosus and 251 from E. ortleppi, including 52 parasitic proteins that were common to all hydatid fluid samples. The in silico functional analysis revealed important molecular functions and processes that are active in pulmonary cystic echinococcosis, such as adhesion, extracellular structures organization, development regulation, signaling transduction, and enzyme activity. CONCLUSIONS The protein profiles described here provide evidence of important mechanisms related to basic cellular processes and functions that act at the host-parasite interface in cystic echinococcosis. The molecular tools used by E. granulosus and E. ortleppi for survival within the host are potential targets for new therapeutic approaches to treat cystic echinococcosis and other larval cestodiases.
Collapse
Affiliation(s)
- Guilherme Brzoskowski Dos Santos
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Edileuza Danieli da Silva
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Shigueo Kitano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Maria Eduarda Battistella
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Karina Mariante Monteiro
- Laboratório de Genômica Estrutural E Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jeferson Camargo de Lima
- Laboratório de Genômica Estrutural E Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Genômica Estrutural E Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Solange Maria de Toledo Serrano
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Arnaldo Zaha
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Laboratório de Genômica Estrutural E Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|