1
|
Young RE, Zuccaro MV, LeDuc CA, Germain ND, Kim TH, Sarmiere P, Chung WK. Pathogenic PPP2R5D variants disrupt neuronal development and neurite outgrowth in patient-derived neurons that are reversed by allele-specific knockdown. HGG ADVANCES 2025; 6:100450. [PMID: 40340253 DOI: 10.1016/j.xhgg.2025.100450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 05/05/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025] Open
Abstract
A significant barrier to the treatment of neurodevelopmental disorders (NDDs) is a limited understanding of disease mechanisms. Heterozygous missense variants in PPP2R5D cause Houge-Janssens syndrome 1, a rare NDD characterized by macrocephaly, developmental delay, intellectual disability, seizures, autism spectrum disorder, and early-onset Parkinson disease. This study investigated the impact of pathogenic PPP2R5D variants on neuronal development and evaluated allele-specific knockdown as a potential therapeutic strategy. Induced pluripotent stem cells derived from individuals carrying the E198K and E420K variants, along with CRISPR-corrected isogenic controls, were differentiated into neural progenitors and cortical glutamatergic neurons. Patient-derived neural progenitors were hyper-proliferative, and glutamatergic neurons differentiated from these cells exhibited increased neurite outgrowth. Notably, neuronal overgrowth phenotypes were not observed in neurons lacking PPP2R5D, suggesting the disorder does not result from loss of function. RNA sequencing (RNA-seq) of glutamatergic neurons derived from patient lines compared to their isogenic controls revealed disruptions in pathways critical for neuronal development, synaptic signaling, and axon guidance. To target pathogenic transcripts, antisense oligonucleotides (ASOs) were designed to selectively knock down the E198K allele, the most common disease-causing missense variant. The most effective ASOs reversed neurite outgrowth defects in patient-derived neurons. These findings uncover molecular mechanisms underlying PPP2R5D-related NDDs and support allele-specific knockdown as a potential therapeutic approach.
Collapse
Affiliation(s)
- Randee E Young
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael V Zuccaro
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Charles A LeDuc
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Tae Hyun Kim
- Ovid Therapeutics, Inc., New York, NY 10001, USA
| | | | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
2
|
Chen S, Wang Y, Cui T, Zheng Y, Zhang F, Ma Q, Zhang C, Liu X. Characterization of three non-canonical N-glycosylation motifs indicates N glyco-A reduces DNA N6-methyladenine and N glyco-D alters G/F actin ratio in Phytophthora sojae. Int J Biol Macromol 2024; 277:133943. [PMID: 39025174 DOI: 10.1016/j.ijbiomac.2024.133943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Asparagine (Asn, N)-linked glycosylation is an abundant post-translational modification in which Asn, typically in Nglyco-X-S/T; X ≠ P motifs, are modified with N-glycans. It has essential regulatory roles in multicellular organisms. In this study, we systematically investigate the function of three N-glycosylation motifs (Nglyco-A, Nglyco-D and Nglyco-S) previously identified in Phytophthora sojae, through site-directed mutagenesis and functional assays. In P. sojae expressing glycosylation-dead variants pre-PsDMAP1N70A (Nglyco-A motif) or PsADFN64A (Nglyco-D motif), zoospore release or cyst germination is impaired. In particular, the pre-PsDMAP1N70A mutant reduces DNA methylation levels, and the PsADFN64A mutant disrupts the actin forms, which could explain the decrease in pathogenicity after N-glycosylation is destroyed. Similarly, P. sojae expressing PsNRXN132A (Nglyco-S motif) shows increased sensitivity to H2O2 and heat. Through autophagy or 26S proteasome pathway inhibition assays, we found that unglycosylated pre-PsDMAP1N70A and PsADFN64A are degraded via the 26S proteasome pathway, while the autophagy pathway is responsible for PsNRXN132A clearance. These findings demonstrate that glycosylation of these motifs regulates the stability and function of glycoproteins necessary for P. sojae growth, reproduction and pathogenicity, which expands the scope of known N-glycosylation regulatory functions in oomycetes.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yuke Wang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Tongshan Cui
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Yuxin Zheng
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Fan Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Quanhe Ma
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Can Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| | - Xili Liu
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Lyra A, Rodart IF, Barros L, Silva TSE, da Rocha AJ, Kochi C, Longui CA. Trio-based whole exome sequencing in patients with ectopic posterior pituitary. Front Pediatr 2024; 12:1334610. [PMID: 39156017 PMCID: PMC11327137 DOI: 10.3389/fped.2024.1334610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Ectopic posterior pituitary (EPP) is a rare congenital abnormality, sometimes associated with other midline defects, such as pituitary stalk interruption syndrome (PSIS), in which thin or absent pituitary stalk and anterior pituitary hypoplasia are combined to EPP. Most cases are sporadic, with few reports of familial cases, and many congenital hypopituitarism (CH) cases remain unsolved. Objective To search for candidate genes associated with this condition, we performed trio-based whole-exome sequencing (WES) on patients with EPP, including two familial cases. Methods This study included subjects with EPP and PSIS diagnosed by a simple MRI protocol (FAST1.2). We performed two distinct analyses in the trio-based WES. We looked for previously described genes associated with pituitary development. Next, we investigated the whole exome for variants inherited in a pattern consistent with a monogenic etiology. Results Ten families were evaluated; eight were composed of a child with EPP and healthy parents, one has two affected siblings, and one family has a son and mother with EPP. When analyzing the previously described candidate variants associated with pituitary development, we found variants in GLI2 and FGFR1 in three families. We also found six other variants of interest in three patients: KMT2A, GALR3, RTN4R, SEMA3A, NIPBL, and DSCAML1. Conclusion The analysis allowed us to find previously reported and not reported GLI2 variants, all inherited from healthy parents, which reinforces the incomplete penetrance pattern of GLI2 variants in the development of EPP and draws attention to possible future functional studies of those variants that have a recurrent expression in CH. We also found novel FGFR1 and SEMA3A variants that suggest an oligogenic mechanism in PSIS and EPP, as seen in patients with hypogonadotropic hypogonadism. We report the first case of a patient with Wiedemann-Steiner syndrome and PSIS, suggesting that the KMT2A gene may be related to pituitary development. Furthermore, the trios' analysis allowed us to find five other variants of interest. Future investigations may clarify the roles of these variants in the etiology of EPP and PSIS.
Collapse
Affiliation(s)
- Arthur Lyra
- Pediatric Endocrinology Unit, Pediatric Department, Irmandade da Santa Casa de Misericórdia de São Paulo and Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | - Itatiana Ferreira Rodart
- Pediatric Endocrinology Unit, Pediatric Department, Irmandade da Santa Casa de Misericórdia de São Paulo and Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | - Lara Barros
- Pediatric Endocrinology Unit, Pediatric Department, Irmandade da Santa Casa de Misericórdia de São Paulo and Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | - Tatiane Sousa e Silva
- Pediatric Endocrinology Unit, Pediatric Department, Irmandade da Santa Casa de Misericórdia de São Paulo and Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | - Antônio José da Rocha
- Department of Radiology, Irmandade da Santa Casa de Misericórdia de São Paulo and Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | - Cristiane Kochi
- Pediatric Endocrinology Unit, Pediatric Department, Irmandade da Santa Casa de Misericórdia de São Paulo and Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| | - Carlos Alberto Longui
- Pediatric Endocrinology Unit, Pediatric Department, Irmandade da Santa Casa de Misericórdia de São Paulo and Santa Casa de Sao Paulo School of Medical Sciences, São Paulo, Brazil
| |
Collapse
|
4
|
Ma M, Brunal AA, Clark KC, Studtmann C, Stebbins K, Higashijima SI, Pan YA. Deficiency in the cell-adhesion molecule dscaml1 impairs hypothalamic CRH neuron development and perturbs normal neuroendocrine stress axis function. Front Cell Dev Biol 2023; 11:1113675. [PMID: 36875755 PMCID: PMC9978177 DOI: 10.3389/fcell.2023.1113675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
The corticotropin-releasing hormone (CRH)-expressing neurons in the hypothalamus are critical regulators of the neuroendocrine stress response pathway, known as the hypothalamic-pituitary-adrenal (HPA) axis. As developmental vulnerabilities of CRH neurons contribute to stress-associated neurological and behavioral dysfunctions, it is critical to identify the mechanisms underlying normal and abnormal CRH neuron development. Using zebrafish, we identified Down syndrome cell adhesion molecule like-1 (dscaml1) as an integral mediator of CRH neuron development and necessary for establishing normal stress axis function. In dscaml1 mutant animals, hypothalamic CRH neurons had higher crhb (the CRH homolog in zebrafish) expression, increased cell number, and reduced cell death compared to wild-type controls. Physiologically, dscaml1 mutant animals had higher baseline stress hormone (cortisol) levels and attenuated responses to acute stressors. Together, these findings identify dscaml1 as an essential factor for stress axis development and suggest that HPA axis dysregulation may contribute to the etiology of human DSCAML1-linked neuropsychiatric disorders.
Collapse
Affiliation(s)
- Manxiu Ma
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States
| | - Alyssa A Brunal
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States.,Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Kareem C Clark
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States
| | - Carleigh Studtmann
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States.,Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Katelyn Stebbins
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States.,Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Shin-Ichi Higashijima
- National Institutes of Natural Sciences, Exploratory Research Center on Life and Living Systems, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Y Albert Pan
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
5
|
Wang Q, Bi Y, Wang Z, Zhu H, Liu M, Wu X, Pan C. Goat SNX29: mRNA expression, InDel and CNV detection, and their associations with litter size. Front Vet Sci 2022; 9:981315. [PMID: 36032302 PMCID: PMC9399746 DOI: 10.3389/fvets.2022.981315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
The sorting nexin 29 (SNX29) gene, a member of the SNX family, is associated with material transport and lipid metabolism. Previous studies have shown that lipid metabolism affects reproductive function in animals. Thus, we hypothesized there is a correlation between the SNX29 gene and reproductive trait. To date, studies on the relationship between the SNX29 gene and reproductive traits are limited. Therefore, the purpose of this study was to examine the polymorphism in the SNX29 gene and its correlation with litter size. Herein, the mRNA expression levels of SNX29 were assayed in various goat tissue. Surprisingly, we found that SNX29 was highly expressed in the corpus luteum, large and small follicles. This result led us to suggest that the SNX29 gene has a critical role in reproduction. We further detected potential polymorphisms in Shaanbei white cashmere (SBWC) goats, including insertion/deletion (InDel, n = 2,057) and copy number variation (CNV, n = 1,402), which were related to fertility. The 17 bp deletion (n = 1004) and the 20 bp deletion (n = 1,053) within the SNX29 gene were discovered to be significantly associated with litter size (P < 0.05), and individuals the ID genotype of P1-Del-17 bp and the DD genotype of P2-Del-20bp had larger litter size. Additionally, the four CNV loci had significant correlations with litter size (P < 0.01) in our detected population. In CNV5, individuals with the median genotype were superior compared to those with loss or gain genotype in term of litter size, and in other three CNVs showed better reproductive trait in the gain genotype. Briefly, these findings suggest that SNX29 could be used as a candidate gene for litter size in goat breeding through marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Yi Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Zhiying Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xianfeng Wu
- Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou, China
- *Correspondence: Chuanying Pan
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
- Xianfeng Wu
| |
Collapse
|
6
|
Szpirer C. Rat Models of Human Diseases and Related Phenotypes: A Novel Inventory of Causative Genes. Mamm Genome 2021; 33:88-90. [PMID: 34184128 DOI: 10.1007/s00335-021-09876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
The laboratory rat (Rattus norvegicus) has been used for a long time as the model of choice in several biomedical disciplines. In 2020, I made an inventory of rat genes that had been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases. Over 350 genes could be found, a significant number of which have similar effects in rat and humans (Szpirer in J Biomed Sci 27:84-155, 2020). However, a few rat disease genes were unintentionally overlooked; in addition, since this review was published, numerous rat genes were inactivated by targeted mutations, revealing their potential role in diseases. It thus seems appropriate to update these data, which is the aim of this paper.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium. .,, Avenue Jassogne, 27, B-1410, Waterloo, Belgium.
| |
Collapse
|