1
|
Hou Y, Shao L, Zhou H, Liu Y, Fisk DG, Spiteri E, Zehnder JL, Peng J, Zhang BM, Hou M. Identification of a pathogenic TUBB1 variant in a Chinese family with congenital macrothrombocytopenia through whole genome sequencing. Platelets 2021; 32:1108-1112. [PMID: 33400601 DOI: 10.1080/09537104.2020.1869714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Congenital macrothrombocytopenia is a genetically heterogeneous group of rare disorders. We herein report a large Chinese family presented with phenotypic variability involving thrombocytopenia and/or giant platelets. Whole genome sequencing (WGS) of the proband and one of his affected brothers identified a potentially pathogenic c.952 C > T heterozygous variant in the TUBB1 gene. This p.R318W β1-tubulin variant was also identified in three additional siblings and five members of the next generation. These findings were consistent with an autosomal dominant inheritance with incomplete penetrance. Moreover, impaired platelet agglutination in response to ristocetin was detected in the patient's brother. Half of the family members harboring the p.R318W mutation displayed significantly decreased external release of p-selectin by stimulated platelets. The p.R318W β1-tubulin mutation was identified for the first time in a Chinese family with congenital macrothrombocytopenia using WGS as an unbiased sequencing approach. Affected individuals within the family demonstrated impaired platelet aggregation and/or release functions.
Collapse
Affiliation(s)
- Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hai Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanfeng Liu
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dianna G Fisk
- Clinical Genomics Program, Stanford Health Care, Palo Alto, United States
| | - Elizabeth Spiteri
- Clinical Genomics Program, Stanford Health Care, Palo Alto, United States.,Department of Pathology, Stanford University School of Medicine, Palo Alto, United States
| | - James L Zehnder
- Department of Pathology, Stanford University School of Medicine, Palo Alto, United States
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bing M Zhang
- Department of Pathology, Stanford University School of Medicine, Palo Alto, United States
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Villarreal-Martínez L, Ibarra-Ramirez M, Calvo-Anguiano G, Lugo-Trampe JDJ, Luna-Záizar H, Martínez-de-Villarreal LE, Meléndez-Aranda L, Jaloma-Cruz AR. Molecular genetic diagnosis by next-generation sequencing in a cohort of Mexican patients with haemophilia and report of novel variants. Blood Cells Mol Dis 2020; 83:102423. [PMID: 32224444 DOI: 10.1016/j.bcmd.2020.102423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/08/2020] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Molecular analysis in haemophilia is currently used in the diagnosis, treatment and prognosis of this disease. Hispanic populations in Latin America have been of interest to researchers due to the reportedly high prevalence of inhibitors in these patients. AIM To perform next-generation sequencing (NGS) in a cohort of Mexican patients with HA and HB and correlate with clinical phenotypes. METHODS Patients with Haemophilia A (HA) or haemophilia B (HB), were evaluated using NGS with an Ion AmpliSeq Custom Panel. Odds ratios (ORs) for associations between F8 variants and inhibitors were obtained. RESULTS A total of 85 patients (60 with HA and 25 with HB) were included. Pathogenic variants in F8 were found in 93.3% of HA patients and in F9 in 96% of HB patients. Twelve novel potentially pathogenic variants were found. Inhibitors were observed in 20% of patients with severe HA. Four patients clinically diagnosed with HA were negative for F8 variants. CONCLUSION Overall detection rate of pathogenic variants in F8 and F9 genes was 94.6%. We identified 12 non previously reported variants and pathogenic variants in other coagulation related genes. Molecular diagnosis of HA and HB permits better options for management, assessment and genetic counseling.
Collapse
Affiliation(s)
- Laura Villarreal-Martínez
- Hematology Service, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León. Monterrey, Nuevo León, Mexico
| | - Marisol Ibarra-Ramirez
- Department of Genetics, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León. Monterrey, Nuevo León, Mexico
| | - Geovana Calvo-Anguiano
- Department of Genetics, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León. Monterrey, Nuevo León, Mexico
| | - José de Jesús Lugo-Trampe
- Department of Genetics, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León. Monterrey, Nuevo León, Mexico
| | - Hilda Luna-Záizar
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara. Guadalajara, Jalisco, Mexico
| | - Laura Elia Martínez-de-Villarreal
- Department of Genetics, Hospital Universitario "Dr. José Eleuterio González", Universidad Autónoma de Nuevo León. Monterrey, Nuevo León, Mexico
| | - Lennon Meléndez-Aranda
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico; Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| | - Ana-Rebeca Jaloma-Cruz
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
3
|
Clinical and laboratory diagnosis of rare coagulation disorders (RCDs). Thromb Res 2019; 196:603-608. [PMID: 31515069 DOI: 10.1016/j.thromres.2019.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022]
Abstract
Rare coagulation disorders (RCDs) are a group of diseases due to coagulation factors deficiency leading to life-long bleeding diathesis. The diagnosis of RCDs is challenging due to the limited knowledge of these disorders and the large heterogeneity of their bleeding patterns. The clinical symptoms of RCDs are extremely diverse in terms of bleeding type, site, severity, age at onset, and duration. The strength of the association between clotting factor activity level in plasma and clinical symptoms is also variable within each RCD. The clinical evaluation of RCDs starts with a detailed collection of clinical history and has been facilitated by bleeding assessment tools, however their effectiveness in diagnosing RCDs requires further investigation. The following laboratory diagnosis of RCDs involves coagulation screening tests, including activated partial thromboplastin time, prothrombin time, and thrombin time. After ruling out the presence of an inhibitor by mixing studies, in case of abnormal results, the specific deficiency is identified by performing one-stage clotting assays using the specific factor-depleted plasmas as substrate. In fibrinogen and FXIII deficiencies coagulation screening tests are not informative, therefore additional tests are needed. Global assays have been developed and are thought to aid in patient management, however, they are not well standardized yet. In addition to outlining the principles of clinical and laboratory diagnosis, this review explores molecular basis of RCDs and laboratory techniques for genetic analysis, and discusses the importance and effectiveness of quality control programs to ensure standardized laboratory results.
Collapse
|
4
|
Gorski MM, Lecchi A, Femia EA, La Marca S, Cairo A, Pappalardo E, Lotta LA, Artoni A, Peyvandi F. Complications of whole-exome sequencing for causal gene discovery in primary platelet secretion defects. Haematologica 2019; 104:2084-2090. [PMID: 30819905 PMCID: PMC6886420 DOI: 10.3324/haematol.2018.204990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/22/2019] [Indexed: 01/24/2023] Open
Abstract
Primary platelet secretion defects constitute a heterogeneous group of functional defects characterized by reduced platelet granule secretion upon stimulation by different agonists. The clinical and laboratory heterogeneity of primary platelet secretion defects warrants a tailored approach. We performed a pilot study in order to develop DNA sequence analysis pipelines for gene discovery and to create a list of candidate causal genes for platelet secretion defects. Whole-exome sequencing analysis of 14 unrelated Italian patients with primary secretion defects and 16 controls was performed on Illumina HiSeq. Variant prioritization was carried out using two filtering approaches: identification of rare, potentially damaging variants in platelet candidate genes or by selecting singletons. To corroborate the results, exome sequencing was applied in a family in which platelet secretion defects and a bleeding diathesis were present. Platelet candidate gene analysis revealed gene defects in 10/14 patients, which included ADRA2A, ARHGAP1, DIAPH1, EXOC1, FCGR2A, ITPR1, LTBP1, PTPN7, PTPN12, PRKACG, PRKCD, RAP1GAP, STXBP5L, and VWF. The analysis of singletons identified additional gene defects in PLG and PHACTR2 in two other patients. The family analysis confirmed a missense variant p.D1144N in the STXBP5L gene and p.P83H in the KCNMB3 gene as potentially causal. In summary, exome sequencing revealed potential causal variants in 12 of 14 patients with primary platelet secretion defects, highlighting the limitations of the genomic approaches for causal gene identification in this heterogeneous clinical and laboratory phenotype.
Collapse
Affiliation(s)
- Marcin M Gorski
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan.,Università degli Studi di Milano, Department of Pathophysiology and Transplantation and Fondazione Luigi Villa, Milan, Italy
| | - Anna Lecchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Eti A Femia
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Silvia La Marca
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Andrea Cairo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Emanuela Pappalardo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan.,Università degli Studi di Milano, Department of Pathophysiology and Transplantation and Fondazione Luigi Villa, Milan, Italy
| | - Luca A Lotta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Andrea Artoni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Milan .,Università degli Studi di Milano, Department of Pathophysiology and Transplantation and Fondazione Luigi Villa, Milan, Italy
| |
Collapse
|