1
|
Platton S, Baker P, Bowyer A, Keenan C, Lawrence C, Lester W, Riddell A, Sutherland M. Guideline for laboratory diagnosis and monitoring of von Willebrand disease: A joint guideline from the United Kingdom Haemophilia Centre Doctors' Organisation and the British Society for Haematology. Br J Haematol 2024; 204:1714-1731. [PMID: 38532595 DOI: 10.1111/bjh.19385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024]
Affiliation(s)
- Sean Platton
- Royal London Hospital Haemophilia Centre, London, UK
| | - Peter Baker
- Oxford Haemophilia and Thrombosis Centre, Nuffield Orthopaedic Hospital, Oxford, UK
| | - Annette Bowyer
- Department of Coagulation, Royal Hallamshire Hospital, Sheffield, UK
| | - Catriona Keenan
- Department of Haematology & the National Coagulation Centre, St. James's Hospital, Dublin, Ireland
| | | | - Will Lester
- Haemophilia Unit, University Hospitals, Birmingham, UK
| | - Anne Riddell
- Katharine Dormandy Haemophilia Centre, Royal Free Hospital, London, UK
| | - Megan Sutherland
- North West Genomic Laboratory Hub, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
2
|
Favaloro EJ. The Role of the von Willebrand Factor Collagen-Binding Assay (VWF:CB) in the Diagnosis and Treatment of von Willebrand Disease (VWD) and Way Beyond: A Comprehensive 36-Year History. Semin Thromb Hemost 2024; 50:43-80. [PMID: 36807283 DOI: 10.1055/s-0043-1763259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The von Willebrand factor (VWF) collagen binding (VWF:CB) assay was first reported for use in von Willebrand diagnostics in 1986, by Brown and Bosak. Since then, the VWF:CB has continued to be used to help diagnose von Willebrand disease (VWD) (correctly) and also to help assign the correct subtype, as well as to assist in the monitoring of VWD therapy, especially desmopressin (DDAVP). However, it is important to recognize that the specific value of any VWF:CB is predicated on the use of an optimized VWF:CB, and that not all VWF:CB assays are so optimized. There are some good commercial assays available, but there are also some "not-so-good" commercial assays available, and these may continue to give the VWF:CB "a bad reputation." In addition to VWD diagnosis and management, the VWF:CB found purpose in a variety of other applications, from assessing ADAMTS13 activity, to investigation into acquired von Willebrand syndrome (especially as associated with use of mechanical circulatory support or cardiac assist devices), to assessment of VWF activity in disease states in where an excess of high-molecular-weight VWF may accumulate, and lead to increased (micro)thrombosis risk (e.g., coronavirus disease 2019, thrombotic thrombocytopenic purpura). The VWF:CB turns 37 in 2023. This review is a celebration of the utility of the VWF:CB over this nearly 40-year history.
Collapse
Affiliation(s)
- Emmanuel J Favaloro
- Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Sydney Centres for Thrombosis and Haemostasis, NSW Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
3
|
Baronciani L, Peake I, Schneppenheim R, Goodeve A, Ahmadinejad M, Badiee Z, Baghaipour MR, Benitez O, Bodó I, Budde U, Cairo A, Castaman G, Eshghi P, Goudemand J, Hassenpflug W, Hoorfar H, Karimi M, Keikhaei B, Lassila R, Leebeek FWG, Lopez Fernandez MF, Mannucci PM, Marino R, Nikšić N, Oyen F, Santoro C, Tiede A, Toogeh G, Tosetto A, Trossaert M, Zetterberg EMK, Eikenboom J, Federici AB, Peyvandi F. Genotypes of European and Iranian patients with type 3 von Willebrand disease enrolled in 3WINTERS-IPS. Blood Adv 2021; 5:2987-3001. [PMID: 34351388 PMCID: PMC8361454 DOI: 10.1182/bloodadvances.2020003397] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Type 3 von Willebrand disease (VWD3) is a rare and severe bleeding disorder characterized by often undetectable von Willebrand factor (VWF) plasma levels, a recessive inheritance pattern, and heterogeneous genotype. The objective of this study was to identify the VWF defects in 265 European and Iranian patients with VWD3 enrolled in 3WINTERS-IPS (Type 3 Von Willebrand International Registries Inhibitor Prospective Study). All analyses were performed in centralized laboratories. The VWF genotype was studied in 231 patients with available DNA (121 [115 families] from Europe [EU], and 110 [91 families] from Iran [IR]). Among 206 unrelated patients, 134 were homozygous (EU/IR = 57/77) and 50 were compound heterozygous (EU/IR = 43/7) for VWF variants. In 22 patients, no or only one variant was found. A total of 154 different VWF variants (EU/IR = 101/58 [5 shared]) were identified among the 379 affected alleles (EU/IR = 210/169), of which 48 (EU/IR = 18/30) were novel. The variants p.Arg1659*, p.Arg1853*, p.Arg2535*, p.Cys275Ser, and delEx1_Ex5 were found in both European and Iranian VWD3 patients. Sixty variants were identified only in a single allele (EU/IR = 50/10), whereas 18 were recurrent (≥3 patients) within 144 affected alleles. Nine large deletions and one large insertion were found. Although most variants predicted null alleles, 21% of patients carried at least 1 missense variant. VWD3 genotype was more heterogeneous in the European population than in the Iranian population, with nearly twice as many different variants. A higher number of novel variants were found in the Iranian VWD3 patients.
Collapse
Affiliation(s)
- Luciano Baronciani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy
| | - Ian Peake
- Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Goodeve
- Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Minoo Ahmadinejad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zahra Badiee
- Hemophilia-Thalassemia Center, Mashhad University of Medical Science, Mashad, Islamic Republic of Iran
| | | | - Olga Benitez
- Hemophilia Unit, University Vall d'Hebron Hospital, Barcelona, Spain
| | - Imre Bodó
- Department of Internal Medicine and Hematology-Semmelweis University, Budapest, Hungary
| | - Ulrich Budde
- Hemostaseology Medilys Laborgesellschaft mbH, Hamburg, Germany
| | - Andrea Cairo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy
| | - Giancarlo Castaman
- Center for Bleeding Disorders and Coagulation, Careggi University Hospital, Florence, Italy
| | - Peyman Eshghi
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Jenny Goudemand
- Univ. Lille, CHU Lille, Haematology and Transfusion, Lille, France
| | - Wolf Hassenpflug
- Department of Pediatric Hematology and Oncology, University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany
| | - Hamid Hoorfar
- Hemophilia Center, Esfahan University of Medical Science, Esfahan, Islamic Republic of Iran
| | - Mehran Karimi
- Hematology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Bijan Keikhaei
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Riitta Lassila
- Research Program Unit in Oncology, University of Helsinki, Helsinki University Central Hospital, Coagulation Disorders, Helsinki, Finland
| | - Frank W G Leebeek
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Pier Mannuccio Mannucci
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy
| | - Renato Marino
- Hemophilia and Thrombosis Centre, University Hospital Policlinico, Bari, Italy
| | - Nikolas Nikšić
- Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Florian Oyen
- Department of Pediatric Hematology and Oncology, University Medical Centre, Hamburg-Eppendorf, Hamburg, Germany
| | - Cristina Santoro
- Hematology, Hemophilia and Thrombosis Center, University Hospital Policlinico Umberto I, Rome, Italy
| | - Andreas Tiede
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Gholamreza Toogeh
- Thrombosis Hemostasis Research Center-Vali-Asr Hospital-Emam Khameini Complex Hospital, Tehran University of Medical Science, Tehran, Islamic Republic of Iran
| | - Alberto Tosetto
- Hemophilia and Thrombosis Center, Hematology Department, San Bortolo Hospital, Vicenza, Italy
| | - Marc Trossaert
- Centre Régional de Traitement de l'Hémophilie-Laboratoire d'Hématologie, Nantes, France
| | | | - Jeroen Eikenboom
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Augusto B Federici
- Hematology and Transfusion Medicine, L. Sacco University Hospital, Department of Oncology and Oncohematology, University of Milan, Milan, Italy; and
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy
- Department of Pathophysiology and Transplantation and Università degli Studi di Milano and Milan and Italy
| |
Collapse
|
4
|
X Chromosome inactivation: a modifier of factor VIII and IX plasma levels and bleeding phenotype in Haemophilia carriers. Eur J Hum Genet 2020; 29:241-249. [PMID: 33082527 DOI: 10.1038/s41431-020-00742-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/16/2020] [Accepted: 09/30/2020] [Indexed: 02/01/2023] Open
Abstract
Haemophilia A and B are X-linked hemorrhagic disorders caused by gene variants in the F8 and F9 genes. Due to recessive inheritance, males are affected, while female carriers are usually asymptomatic with a wide range of factor VIII (FVIII) or IX (FIX) levels. Bleeding tendency in female carriers is extremely variable and may be associated with low clotting factor levels. This could be explained by F8 or F9 genetic variations, numerical or structural X chromosomal anomalies, or epigenetic variations such as irregular X chromosome inactivation (XCI). The aim of the study was to determine whether low FVIII or FIX coagulant activity in haemophilia carriers could be related to XCI and bleeding symptoms. HUMARA assay was performed on 73 symptomatic carriers with low clotting activity ≤50 IU/dL. Bleeding Assessment Tool (BAT) from the International Society on Thrombosis and Haemostasis (ISTH) was used to describe symptoms in the cohort of carriers. In 97% of haemophilia carriers, a specific gene variant in heterozygous state was found, which alone could not justify their low FVIII or FIX levels (≤50 IU/dL). A statistical association between XCI pattern and FVIII and FIX levels was observed. Moreover, female carriers with low coagulant activity (≤20 IU/dL) and high degree of XCI ( ≥ 80:20) had a higher ISTH-BAT score than the carriers with the opposite conditions (>20 IU/dL and <80:20). In our cohort of haemophilia carriers, XCI was significantly skewed, which may contribute to the low expression of clotting factor levels and bleeding symptoms.
Collapse
|
5
|
Stufano F, Baronciani L, Bucciarelli P, Boscarino M, Colpani P, Pagliari MT, Peyvandi F. Evaluation of a fully automated von Willebrand factor assay panel for the diagnosis of von Willebrand disease. Haemophilia 2020; 26:298-305. [PMID: 32107842 DOI: 10.1111/hae.13929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/08/2019] [Accepted: 01/03/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION von Willebrand disease (VWD) diagnosis starts with first level tests: factor VIII coagulant activity, VWF antigen (VWF:Ag) and platelet-dependent VWF activity (VWF:RCo, VWF:Ab, VWF:GPIbR or VWF:GPIbM). The VWF collagen binding (VWF:CB) assay measures the binding capacity of von Willebrand factor (VWF) to collagen. AIM To assess, in previously diagnosed VWD patients, the performance of a fully automated chemiluminescent test panel including VWF:Ag, VWF:GPIbR and VWF:CB assays. METHODS The patients, historically evaluated using in-house VWF:Ag and VWF:CB assays and an automated latex enhanced immunoassay VWF:GPIbR method, were re-evaluated using the VWF test panel HemosIL AcuStar. RESULTS The VWF:GPIbR/VWF:Ag and VWF:CB/VWF:Ag obtained by means of AcuStar showed an overall good concordance with the corresponding data obtained at the time of the historical diagnosis. When discrepancies occurred, these were generally due to the lower VWF:CB/VWF:Ag obtained with AcuStar as compared with that obtained with the historical methods and this affected particularly the diagnosis of VWD type 2M. Together, the AcuStar VWF:GPIbR/VWF:Ag and VWF:CB/VWF:Ag were able to distinguish type 1 from types 2A, 2B and 2M, whereas no distinction was possible between type 2A and 2B. CONCLUSION The AcuStar panel offers a good performance in the differential diagnosis between VWD type 1 and 2A/2B patients. A high rate of coincidence with historical diagnosis was obtained for VWD types 3, 2A/2B and 1. Even though in some cases more tests (eg, RIPA/multimeric analysis) are needed to complete an accurate VWD classification, the AcuStar panel is considered a sensitive, rapid and reliable tool to diagnose VWD patients.
Collapse
Affiliation(s)
- Francesca Stufano
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione Luigi Villa, Milan, Italy
| | - Luciano Baronciani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione Luigi Villa, Milan, Italy
| | - Paolo Bucciarelli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione Luigi Villa, Milan, Italy
| | - Marco Boscarino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione Luigi Villa, Milan, Italy
| | - Paola Colpani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione Luigi Villa, Milan, Italy
| | - Maria Teresa Pagliari
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flora Peyvandi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione Luigi Villa, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|