1
|
Binder U, Skerra A. Strategies for extending the half-life of biotherapeutics: successes and complications. Expert Opin Biol Ther 2025; 25:93-118. [PMID: 39663567 DOI: 10.1080/14712598.2024.2436094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
INTRODUCTION Engineering of the drug half-life in vivo has become an integral part of modern biopharmaceutical development due to the fact that many proteins/peptides with therapeutic potential are quickly cleared by kidney filtration after injection and, thus, circulate only a few hours in humans (or just minutes in mice). AREAS COVERED Looking at the growing list of clinically approved biologics that have been modified for prolonged activity, and also the plethora of such drugs under preclinical and clinical development, it is evident that not one solution fits all needs, owing to the vastly different structural features and functional properties of the pharmacologically active entities. This article provides an overview of established half-life extension strategies, as well as of emerging novel concepts for extending the in vivo stability of biologicals, and their pros and cons. EXPERT OPINION Beyond the classical and still dominating technologies for improving drug pharmacokinetics and bioavailability, Fc fusion and PEGylation, various innovative approaches that offer advantages in different respects have entered the clinical stage. While the Fc fusion partner may be gradually superseded by engineered albumin-binding domains, chemical PEGylation may be replaced by biodegradable recombinant amino-acid polymers like PASylation, thus also offering a purely biotechnological manufacturing route.
Collapse
Affiliation(s)
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising, Germany
| |
Collapse
|
2
|
Zhang Q, Tian Y, Yang Y, Huang Q, Feng H, Zeng R, Li S. A bioinspired supramolecular nanoprodrug for precision therapy of B-cell non-Hodgkin's lymphoma. J Nanobiotechnology 2024; 22:475. [PMID: 39127737 DOI: 10.1186/s12951-024-02745-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Fludarabine (FA) is still considered as a first-line chemotherapy drug for hematological tumors related to B lymphocytes. However, it is worth noting that the non-specific distribution and non-different cytotoxicity of FA may lead to irreversible consequences such as central nervous system damage such as blindness, coma, and even death. Therefore, it is very important to develop a system to targeting delivery FA. In preliminary studies, it was found that B lymphoma cells would specific highly expressing the sialic acid-binding immunoglobulin-like lectin 2 (known as CD22). Inspired by the specific recognition of sialic acid residues and CD22, we have developed a supramolecular prodrug based on polysialic acid, an endogenous biomacromolecule, achieving targeted-therapy of B-cell non-Hodgkin's lymphoma (B-NHL). Specifically, the prepared hydrophobic reactive oxygen species-responsive FA dimeric prodrug (F2A) interacts with the TPSA, which polysialic acid were modified by the thymidine derivatives, through non-covalent intermolecular interactions similar to "Watson-Crick" base pairing, resulting in the formation of nanoscale supramolecular prodrug (F@TPSA). Cell experiments have confirmed that F@TPSA can be endocytosed by CD22+ B lymphoma cells including Raji and Ramos cells, and there is a significant difference of endocytosis in other leukocytes. Furthermore, in B-NHL mouse model, compared with FA, F@TPSA is determined to have a stronger tumor targeting and inhibitory effect. More importantly, the distribution of F@TPSA in vivo tends to be enriched in lymphoma tissue rather than nonspecific, thus reducing the leukopenia of FA. The targeted delivery system based on PSA provides a new prodrug modification strategy for targeted treatment of B-NHL.
Collapse
Affiliation(s)
- Qixiong Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Yuhan Tian
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Yanrui Yang
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Qiuying Huang
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Haibo Feng
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, 610041, China
| | - Rui Zeng
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China
| | - Shanshan Li
- College of Pharmacy, Key Laboratory of Research and Application of Ethnic Medicine Processing and Preparation on the Qinghai-Tibet Plateau, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Holle LA, Pantazis JC, Turecek PL, Wolberg AS. Clot formation and fibrinolysis assays reveal functional differences among hemostatic agents in hemophilia A plasma. Res Pract Thromb Haemost 2024; 8:102337. [PMID: 38426025 PMCID: PMC10901841 DOI: 10.1016/j.rpth.2024.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Background Measuring the activity of hemostatic agents used to treat hemophilia A often requires drug-specific assays. In vitro assays show hemophilic clots have abnormal characteristics, including prolonged clotting time and decreased resistance to fibrinolysis. The ability of certain agents to correct these parameters in vitro is associated with hemostatic efficacy in vivo. Objectives To compare effects of established and emerging hemostatic agents on clot formation and fibrinolysis in hemophilia A plasma. Methods Pooled and individual hemophilia A platelet-poor plasmas were spiked with replacement (recombinant factor VIII [rFVIII], PEGylated rFVIII, polysialylated rFVIII, and porcine rFVIII) or bypassing (emicizumab, rFVIIa, and activated prothrombin complex concentrate) products. Effects on tissue factor-initiated clot formation and fibrinolysis were measured by turbidity. Results Compared to normal pooled plasma, hemophilia-pooled plasma showed reduced clot formation and increased fibrinolysis, and all replacement agents improved these characteristics. rFVIII and PEGylated rFVIII produced similar effects at similar concentrations, whereas polysialylated rFVIII produced slightly higher and porcine rFVIII slightly lower effects at these concentrations. Bypassing agents enhanced clot formation and stability, but patterns differed from replacement agents. The clotting rate showed a concentration-response relationship for all agents. High concentrations of all products produced effects that exceeded the normal range in at least some parameters. Responses of individual donors varied, but all agents improved clot formation and stability in all donors tested. Conclusion Clotting and fibrinolysis assays reveal hemostatic effects of replacement and bypassing therapies at clinically relevant concentrations. These assays may help characterize hemostatic agents and optimize dosing.
Collapse
Affiliation(s)
- Lori A. Holle
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jacob C. Pantazis
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Peter L. Turecek
- Plasma-Derived Therapies R&D, Baxalta Innovations GmbH – Takeda, Vienna, Austria
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Holz E, Darwish M, Tesar DB, Shatz-Binder W. A Review of Protein- and Peptide-Based Chemical Conjugates: Past, Present, and Future. Pharmaceutics 2023; 15:600. [PMID: 36839922 PMCID: PMC9959917 DOI: 10.3390/pharmaceutics15020600] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Over the past few decades, the complexity of molecular entities being advanced for therapeutic purposes has continued to evolve. A main propellent fueling innovation is the perpetual mandate within the pharmaceutical industry to meet the needs of novel disease areas and/or delivery challenges. As new mechanisms of action are uncovered, and as our understanding of existing mechanisms grows, the properties that are required and/or leveraged to enable therapeutic development continue to expand. One rapidly evolving area of interest is that of chemically enhanced peptide and protein therapeutics. While a variety of conjugate molecules such as antibody-drug conjugates, peptide/protein-PEG conjugates, and protein conjugate vaccines are already well established, others, such as antibody-oligonucleotide conjugates and peptide/protein conjugates using non-PEG polymers, are newer to clinical development. This review will evaluate the current development landscape of protein-based chemical conjugates with special attention to considerations such as modulation of pharmacokinetics, safety/tolerability, and entry into difficult to access targets, as well as bioavailability. Furthermore, for the purpose of this review, the types of molecules discussed are divided into two categories: (1) therapeutics that are enhanced by protein or peptide bioconjugation, and (2) protein and peptide therapeutics that require chemical modifications. Overall, the breadth of novel peptide- or protein-based therapeutics moving through the pipeline each year supports a path forward for the pursuit of even more complex therapeutic strategies.
Collapse
Affiliation(s)
- Emily Holz
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Martine Darwish
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Devin B. Tesar
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Whitney Shatz-Binder
- Department of Pharmaceutical Development, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
- Department of Protein Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
5
|
Engelmaier A, Schrenk G, Billwein M, Gritsch H, Zlabinger C, Weber A. Selective human factor VIII activity measurement after analytical in-line purification. Res Pract Thromb Haemost 2022; 6:e12821. [PMID: 36254254 PMCID: PMC9561358 DOI: 10.1002/rth2.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022] Open
Abstract
Background It is essential to measure the activity of factor VIII (FVIII) throughout the life cycle of a coagulation FVIII concentrate. Such measurement in nonclinical pharmacokinetic studies is potentially biased by the presence of endogenous nonhuman FVIII, and certain manufacturing process-related additives can also impact the assay performance. Finally, the presence of FVIII activity-mimicking antibodies poses challenges when measuring FVIII in samples. Therefore, we developed an antibody-based chromogenic FVIII assay, which facilitates the selective and sensitive activity measurement of human FVIII in the presence of animal plasma and interfering agents. Methods Plate-bound monoclonal anti-FVIII antibody specifically captured human FVIII, which was then measured with a chromogenic activity assay. A human reference plasma preparation was used to construct the calibration curve. Spike recovery was carried out in a citrated cynomolgus monkey plasma-solvent/detergent mixture and in the presence of the bispecific antibody emicizumab. Results The calibration curve ranged from 3.03 to 97.0 mIU FVIII/ml and was obtained repeatedly with good accuracy. B domain-deleted and full-length FVIII did not differ in their responses. Recovery of spiked human FVIII in citrated cynomolgus monkey plasma was 102.7%, while neither native monkey plasma nor the other animal specimen tested showed any activity. Solvent/detergent solution and the bispecific antibody emicizumab had no influence on the assay. Conclusion Combining antibody-mediated specific capture of human FVIII and a chromogenic activity assay resulted in a selective and sensitive measurement of human FVIII with no interference by endogenous, nonhuman FVIII, manufacturing process additives, or an FVIII activity-mimicking antibody.
Collapse
Affiliation(s)
- Andrea Engelmaier
- Analytical Development, Pharmaceutical ScienceBaxalta Innovations GmbH, Part of TakedaViennaAustria
| | - Gerald Schrenk
- Analytical Development, Pharmaceutical ScienceBaxalta Innovations GmbH, Part of TakedaViennaAustria
| | - Manfred Billwein
- Analytical Development, Pharmaceutical ScienceBaxalta Innovations GmbH, Part of TakedaViennaAustria
| | - Herbert Gritsch
- Analytical Development, Pharmaceutical ScienceBaxalta Innovations GmbH, Part of TakedaViennaAustria
| | - Christoph Zlabinger
- Analytical Development, Pharmaceutical ScienceBaxalta Innovations GmbH, Part of TakedaViennaAustria
| | - Alfred Weber
- R&D Plasma Derived TherapiesBaxalta Innovations GmbH, Part of TakedaViennaAustria
| |
Collapse
|
6
|
Polysialylated nanoinducer for precisely enhancing apoptosis and anti-tumor immune response in B-cell lymphoma. Acta Biomater 2022; 149:321-333. [PMID: 35779772 DOI: 10.1016/j.actbio.2022.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 11/24/2022]
Abstract
B-cell lymphoma is one of the most common types of lymphoma, and chemotherapy is still the current first-line treatment. However, due to the systemic side effects caused by chemotherapy drugs, traditional regimens have limitations and are difficult to achieve ideal efficacy. Recent studies have found that CD22 (also known as Siglec-2), as a specific marker of B-cells, is significantly up-regulated on B-cell lymphomas. Inspired by the specific recognition and binding of sialic acid residues by CD22, a polysialic acid (PSA)-modified PLGA nanocarrier (SAPC NP) designed to target B-cell lymphoma was fabricated. Mitoxantrone (MTO) was further loaded into SAPC NP through hydrophobic interactions to obtain polysialylated immunogenic cell death (ICD) nanoinducer (MTO@SAPC NP). Cellular experiments confirmed that MTO@SAPC NP could be specifically taken up by two types of CD22+ B lymphoma cells including Raji and Ramos cells, unlike the poor endocytic performance in other lymphocytes or macrophages. MTO@SAPC NP was determined to enhance the ICD and show better apoptotic effect on CD22+ cells. In the mouse model of B-cell lymphoma, MTO@SAPC NP significantly reduced the systemic side effects of MTO through lymphoma targeting, then achieved enhanced anti-tumor immune response, better tumor suppressive effect, and improved survival rate. Therefore, the polysialylated ICD nanoinducer provides a new strategy for precise therapy of B-cell lymphoma. STATEMENT OF SIGNIFICANCE: • Polysialic acid functionalized nanocarrier (SAPC NP) was designed and prepared. • SAPC NP is specifically endocytosed by two CD22+ B lymphoma cells. • Mitoxantrone-loaded nanoinducer (MTO@SAPC NP) promote immunogenic cell death and anti-tumor immune response. • "Polysialylation" is a potential new approach for precision treatment of B-cell lymphoma.
Collapse
|
7
|
Unveiling the pitfalls of the protein corona of polymeric drug nanocarriers. Drug Deliv Transl Res 2020; 10:730-750. [DOI: 10.1007/s13346-020-00745-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Tiede A, Allen G, Bauer A, Chowdary P, Collins P, Goldstein B, Jiang HJ, Kӧck K, Takács I, Timofeeva M, Wolfsegger M, Srivastava S. SHP656, a polysialylated recombinant factor VIII (PSA-rFVIII): First-in-human study evaluating safety, tolerability and pharmacokinetics in patients with severe haemophilia A. Haemophilia 2019; 26:47-55. [PMID: 31778283 PMCID: PMC7027936 DOI: 10.1111/hae.13878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 12/03/2022]
Abstract
Introduction SHP656 is the first factor VIII (FVIII) product developed using polysialylation (PSA) technology, in which full‐length recombinant (r) FVIII (anti‐haemophilic factor [recombinant]) is conjugated with a 20 kDa PSA polymer. Aim To compare the safety, immunogenicity and pharmacokinetics of SHP656 vs the parent rFVIII (octocog alfa) after single infusions of 25‐75 IU/kg in patients with severe haemophilia A (FVIII activity <1%). Methods Multinational, phase 1, prospective, open‐label, two‐period, fixed‐sequence, dose‐escalation trial (clinicaltrials.gov NCT02716194). Patients received single doses of rFVIII and then SHP656 sequentially at the same dose: 25 ± 3 IU/kg (Cohort 1), 50 ± 5 IU/kg (Cohort 2) and 75 ± 5 IU/kg (Cohort 3). Results Forty patients received rFVIII: 11 in Cohort 1, 16 in Cohort 2 and 13 in Cohort 3. Two patients withdrew before receiving SHP656, leaving 38 patients who completed the study and received both treatments. No treatment‐related adverse events (AEs), serious AEs, deaths, study withdrawals, thrombotic events or allergic reactions were reported; and no significant treatment‐related changes in laboratory parameters or vital signs. No patients developed FVIII inhibitors or antibodies to PSA. FVIII activity was significantly prolonged following SHP656 administration vs rFVIII with an approximately 1.5‐fold extension in mean residence time (P < .05). Exposure increased proportional to the SHP656 dose over the 25‐75 IU/kg dose range. Conclusion Polysialylation of rFVIII confers a half‐life extension similar to that of approved extended half‐life products that use either PEGylation or Fc fusion technology and was not associated with any treatment‐related adverse events.
Collapse
Affiliation(s)
| | - Geoffrey Allen
- Baxalta US Inc, a member of the Takeda group of companies, Cambridge, MA, USA
| | - Alexander Bauer
- Baxalta Innovations GmbH, a member of the Takeda group of companies, Vienna, Austria
| | - Pratima Chowdary
- Katharine Dormandy Haemophilia and Thrombosis Centre, Royal Free Hospital, London, UK
| | - Peter Collins
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Brahm Goldstein
- Baxalta US Inc, a member of the Takeda group of companies, Cambridge, MA, USA
| | - Hongyu Jeanne Jiang
- Baxalta US Inc, a member of the Takeda group of companies, Cambridge, MA, USA
| | | | | | - Margarita Timofeeva
- Federal State Budgetary Institution of Science "Kirov Scientific and Research Institute of Hematology and Blood Transfusion of Federal Medico-Biological Agency", Kirov, Russian Federation
| | - Martin Wolfsegger
- Baxalta Innovations GmbH, a member of the Takeda group of companies, Vienna, Austria
| | | |
Collapse
|