1
|
Kachanov A, Kostyusheva A, Brezgin S, Karandashov I, Ponomareva N, Tikhonov A, Lukashev A, Pokrovsky V, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. The menace of severe adverse events and deaths associated with viral gene therapy and its potential solution. Med Res Rev 2024; 44:2112-2193. [PMID: 38549260 DOI: 10.1002/med.22036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 08/09/2024]
Abstract
Over the past decade, in vivo gene replacement therapy has significantly advanced, resulting in market approval of numerous therapeutics predominantly relying on adeno-associated viral vectors (AAV). While viral vectors have undeniably addressed several critical healthcare challenges, their clinical application has unveiled a range of limitations and safety concerns. This review highlights the emerging challenges in the field of gene therapy. At first, we discuss both the role of biological barriers in viral gene therapy with a focus on AAVs, and review current landscape of in vivo human gene therapy. We delineate advantages and disadvantages of AAVs as gene delivery vehicles, mostly from the safety perspective (hepatotoxicity, cardiotoxicity, neurotoxicity, inflammatory responses etc.), and outline the mechanisms of adverse events in response to AAV. Contribution of every aspect of AAV vectors (genomic structure, capsid proteins) and host responses to injected AAV is considered and substantiated by basic, translational and clinical studies. The updated evaluation of recent AAV clinical trials and current medical experience clearly shows the risks of AAVs that sometimes overshadow the hopes for curing a hereditary disease. At last, a set of established and new molecular and nanotechnology tools and approaches are provided as potential solutions for mitigating or eliminating side effects. The increasing number of severe adverse reactions and, sadly deaths, demands decisive actions to resolve the issue of immune responses and extremely high doses of viral vectors used for gene therapy. In response to these challenges, various strategies are under development, including approaches aimed at augmenting characteristics of viral vectors and others focused on creating secure and efficacious non-viral vectors. This comprehensive review offers an overarching perspective on the present state of gene therapy utilizing both viral and non-viral vectors.
Collapse
Affiliation(s)
- Artyom Kachanov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Anastasiya Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Ivan Karandashov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalia Ponomareva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Andrey Tikhonov
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Alexander Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
| | - Vadim Pokrovsky
- Laboratory of Biochemical Fundamentals of Pharmacology and Cancer Models, Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People's Friendship University, Russia (RUDN University), Moscow, Russia
| | - Andrey A Zamyatnin
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Research, Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Dmitry Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, Moscow, Russia
- Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Milani M, Canepari C, Assanelli S, Merlin S, Borroni E, Starinieri F, Biffi M, Russo F, Fabiano A, Zambroni D, Annoni A, Naldini L, Follenzi A, Cantore A. GP64-pseudotyped lentiviral vectors target liver endothelial cells and correct hemophilia A mice. EMBO Mol Med 2024; 16:1427-1450. [PMID: 38684862 PMCID: PMC11178766 DOI: 10.1038/s44321-024-00072-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Lentiviral vectors (LV) are efficient vehicles for in vivo gene delivery to the liver. LV integration into the chromatin of target cells ensures their transmission upon proliferation, thus allowing potentially life-long gene therapy following a single administration, even to young individuals. The glycoprotein of the vesicular stomatitis virus (VSV.G) is widely used to pseudotype LV, as it confers broad tropism and high stability. The baculovirus-derived GP64 envelope protein has been proposed as an alternative for in vivo liver-directed gene therapy. Here, we perform a detailed comparison of VSV.G- and GP64-pseudotyped LV in vitro and in vivo. We report that VSV.G-LV transduced hepatocytes better than GP64-LV, however the latter showed improved transduction of liver sinusoidal endothelial cells (LSEC). Combining GP64-pseudotyping with the high surface content of the phagocytosis inhibitor CD47 further enhanced LSEC transduction. Coagulation factor VIII (FVIII), the gene mutated in hemophilia A, is naturally expressed by LSEC, thus we exploited GP64-LV to deliver a FVIII transgene under the control of the endogenous FVIII promoter and achieved therapeutic amounts of FVIII and correction of hemophilia A mice.
Collapse
Affiliation(s)
- Michela Milani
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cesare Canepari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Simone Assanelli
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ester Borroni
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Francesco Starinieri
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mauro Biffi
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Russo
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Fabiano
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Andrea Annoni
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
3
|
Zangi AR, Amiri A, Pazooki P, Soltanmohammadi F, Hamishehkar H, Javadzadeh Y. Non-viral and viral delivery systems for hemophilia A therapy: recent development and prospects. Ann Hematol 2024; 103:1493-1511. [PMID: 37951852 DOI: 10.1007/s00277-023-05459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/17/2023] [Indexed: 11/14/2023]
Abstract
Recent advancements have focused on enhancing factor VIII half-life and refining its delivery methods, despite the well-established knowledge that factor VIII deficiency is the main clotting protein lacking in hemophilia. Consequently, both viral and non-viral delivery systems play a crucial role in enhancing the quality of life for hemophilia patients. The utilization of viral vectors and the manipulation of non-viral vectors through targeted delivery are significant advancements in the field of cellular and molecular therapies for hemophilia. These developments contribute to the progression of treatment strategies and hold great promise for improving the overall well-being of individuals with hemophilia. This review study comprehensively explores the application of viral and non-viral vectors in cellular (specifically T cell) and molecular therapy approaches, such as RNA, monoclonal antibody (mAb), and CRISPR therapeutics, with the aim of addressing the challenges in hemophilia treatment. By examining these innovative strategies, the study aims to shed light on potential solutions to enhance the efficacy and outcomes of hemophilia therapy.
Collapse
Affiliation(s)
- Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran
| | - Ala Amiri
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Pouya Pazooki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, 5166-15731, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran.
| |
Collapse
|
4
|
Khan SU, Khan MU, Suleman M, Inam A, Din MAU. Hemophilia Healing with AAV: Navigating the Frontier of Gene Therapy. Curr Gene Ther 2024; 24:265-277. [PMID: 38284735 DOI: 10.2174/0115665232279893231228065540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024]
Abstract
Gene therapy for hemophilia has advanced tremendously after thirty years of continual study and development. Advancements in medical science have facilitated attaining normal levels of Factor VIII (FVIII) or Factor IX (FIX) in individuals with haemophilia, thereby offering the potential for their complete recovery. Despite the notable advancements in various countries, there is significant scope for further enhancement in haemophilia gene therapy. Adeno-associated virus (AAV) currently serves as the primary vehicle for gene therapy in clinical trials targeting haemophilia. Subsequent investigations will prioritize enhancing viral capsid structures, transgene compositions, and promoters to achieve heightened transduction efficacy, diminished immunogenicity, and more predictable therapeutic results. The present study indicates that whereas animal models have transduction efficiency that is over 100% high, human hepatocytes are unable to express clotting factors and transduction efficiency to comparable levels. According to the current study, achieving high transduction efficiency and high levels of clotting factor expression in human hepatocytes is still insufficient. It is also crucial to reduce the risk of cellular stress caused by protein overload. Despite encountering various hurdles, the field of haemophilia gene therapy holds promise for the future. As technology continues to advance and mature, it is anticipated that a personalized therapeutic approach will be developed to cure haemophilia effectively.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, People's Republic of China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | - Amrah Inam
- School of Life Science and Technology, Institute of Biomedical Engineering and Bioinformatics, Xi'an Jiaotong University, Xi'an, China
| | - Muhammad Azhar Ud Din
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P.R. China
| |
Collapse
|
5
|
Kerzel T, Giacca G, Beretta S, Bresesti C, Notaro M, Scotti GM, Balestrieri C, Canu T, Redegalli M, Pedica F, Genua M, Ostuni R, Kajaste-Rudnitski A, Oshima M, Tonon G, Merelli I, Aldrighetti L, Dellabona P, Coltella N, Doglioni C, Rancoita PMV, Sanvito F, Naldini L, Squadrito ML. In vivo macrophage engineering reshapes the tumor microenvironment leading to eradication of liver metastases. Cancer Cell 2023; 41:1892-1910.e10. [PMID: 37863068 DOI: 10.1016/j.ccell.2023.09.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/27/2023] [Accepted: 09/27/2023] [Indexed: 10/22/2023]
Abstract
Liver metastases are associated with poor response to current pharmacological treatments, including immunotherapy. We describe a lentiviral vector (LV) platform to selectively engineer liver macrophages, including Kupffer cells and tumor-associated macrophages (TAMs), to deliver type I interferon (IFNα) to liver metastases. Gene-based IFNα delivery delays the growth of colorectal and pancreatic ductal adenocarcinoma liver metastases in mice. Response to IFNα is associated with TAM immune activation, enhanced MHC-II-restricted antigen presentation and reduced exhaustion of CD8+ T cells. Conversely, increased IL-10 signaling, expansion of Eomes CD4+ T cells, a cell type displaying features of type I regulatory T (Tr1) cells, and CTLA-4 expression are associated with resistance to therapy. Targeting regulatory T cell functions by combinatorial CTLA-4 immune checkpoint blockade and IFNα LV delivery expands tumor-reactive T cells, attaining complete response in most mice. These findings support a promising therapeutic strategy with feasible translation to patients with unmet medical need.
Collapse
Affiliation(s)
- Thomas Kerzel
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Giovanna Giacca
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Stefano Beretta
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Bioinformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Bresesti
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Marco Notaro
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Giulia Maria Scotti
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Chiara Balestrieri
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Tamara Canu
- Preclinical Imaging Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Miriam Redegalli
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Pedica
- Vita Salute San Raffaele University, 20132 Milan, Italy; Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marco Genua
- Genomics of the Innate Immune System Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Renato Ostuni
- Vita Salute San Raffaele University, 20132 Milan, Italy; Genomics of the Innate Immune System Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Anna Kajaste-Rudnitski
- Retrovirus-Host Interactions and Innate Immunity to Gene Transfer, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Giovanni Tonon
- Vita Salute San Raffaele University, 20132 Milan, Italy; Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan Merelli
- Bioinformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; National Research Council, Institute for Biomedical Technologies, 20054 Segrate, Italy
| | - Luca Aldrighetti
- Vita Salute San Raffaele University, 20132 Milan, Italy; Hepatobiliary Surgery Division, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paolo Dellabona
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Nadia Coltella
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudio Doglioni
- Vita Salute San Raffaele University, 20132 Milan, Italy; Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paola M V Rancoita
- CUSSB University Center for Statistics in the Biomedical Science, Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Francesca Sanvito
- Pathology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luigi Naldini
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy.
| | - Mario Leonardo Squadrito
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; Vita Salute San Raffaele University, 20132 Milan, Italy.
| |
Collapse
|
6
|
Canepari C, Cantore A. Gene transfer and genome editing for familial hypercholesterolemia. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1140997. [PMID: 39086674 PMCID: PMC11285693 DOI: 10.3389/fmmed.2023.1140997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 08/02/2024]
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant inherited disease characterized by high circulating low-density lipoprotein (LDL) cholesterol. High circulating LDL cholesterol in FH is due to dysfunctional LDL receptors, and is mainly expressed by hepatocytes. Affected patients rapidly develop atherosclerosis, potentially leading to myocardial infarction and death within the third decade of life if left untreated. Here, we introduce the disease pathogenesis and available treatment options. We highlight different possible targets of therapeutic intervention. We then review different gene therapy strategies currently under development, which may become novel therapeutic options in the future, and discuss their advantages and disadvantages. Finally, we briefly outline the potential applications of some of these strategies for the more common acquired hypercholesterolemia disease.
Collapse
Affiliation(s)
- Cesare Canepari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
7
|
Host Cell Restriction Factors Blocking Efficient Vector Transduction: Challenges in Lentiviral and Adeno-Associated Vector Based Gene Therapies. Cells 2023; 12:cells12050732. [PMID: 36899868 PMCID: PMC10001033 DOI: 10.3390/cells12050732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Gene therapy relies on the delivery of genetic material to the patient's cells in order to provide a therapeutic treatment. Two of the currently most used and efficient delivery systems are the lentiviral (LV) and adeno-associated virus (AAV) vectors. Gene therapy vectors must successfully attach, enter uncoated, and escape host restriction factors (RFs), before reaching the nucleus and effectively deliver the therapeutic genetic instructions to the cell. Some of these RFs are ubiquitously expressed in mammalian cells, while others are cell-specific, and others still are expressed only upon induction by danger signals as type I interferons. Cell restriction factors have evolved to protect the organism against infectious diseases and tissue damage. These restriction factors can be intrinsic, directly acting on the vector, or related with the innate immune response system, acting indirectly through the induction of interferons, but both are intertwined. The innate immunity is the first line of defense against pathogens and, as such cells derived from myeloid progenitors (but not only), are well equipped with RFs to detect pathogen-associated molecular patterns (PAMPs). In addition, some non-professional cells, such as epithelial cells, endothelial cells, and fibroblasts, play major roles in pathogen recognition. Unsurprisingly, foreign DNA and RNA molecules are among the most detected PAMPs. Here, we review and discuss identified RFs that block LV and AAV vector transduction, hindering their therapeutic efficacy.
Collapse
|
8
|
Pipe SW, Arruda VR, Lange C, Kitchen S, Eichler H, Wadsworth S. Characteristics of BAY 2599023 in the Current Treatment Landscape of Hemophilia A Gene Therapy. Curr Gene Ther 2023; 23:81-95. [PMID: 36111754 DOI: 10.2174/1566523222666220914105729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/22/2022]
Abstract
Hemophilia A, a single gene disorder leading to deficient Factor VIII (FVIII), is a suitable candidate for gene therapy. The aspiration is for single administration of a genetic therapy that would allow the production of endogenous FVIII sufficient to restore hemostasis and other biological processes. This would potentially result in reliable protection from bleeding and its associated physical and emotional impacts. Gene therapy offers the possibility of a clinically relevant improvement in disease phenotype and transformational improvement in quality of life, including an opportunity to engage in physical activities more confidently. Gene therapy products for hemophilia A in advanced clinical development use adeno-associated viral (AAV) vectors and a codon-optimized B-domain deleted FVIII transgene. However, the different AAV-based gene therapies have distinct design features, such as choice of vector capsid, enhancer and promoter regions, FVIII transgene sequence and manufacturing processes. These, in turn, impact patient eligibility, safety and efficacy. Ideally, gene therapy technology for hemophilia A should offer bleed protection, durable FVIII expression, broad eligibility and limited response variability between patients, and long-term safety. However, several limitations and challenges must be overcome. Here, we introduce the characteristics of the BAY 2599023 (AAVhu37.hFVIIIco, DTX 201) gene therapy product, including the low prevalence in the general population of anti-AAV-hu37 antibodies, as well as other gene therapy AAV products and approaches. We will examine how these can potentially meet the challenges of gene therapy, with the ultimate aim of improving the lives of patients with hemophilia A.
Collapse
Affiliation(s)
- Steven W Pipe
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Valder R Arruda
- Division of Hematology, Department of Pediatrics, Center for Cell and Molecular Therapeutics at Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Stephen Kitchen
- Sheffield Haemophilia and Thrombosis Centre, Sheffield Teaching Hospitals, Sheffield, UK
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University and University Hospital, Homburg/Saar, Germany
| | | |
Collapse
|
9
|
Yamaguti-Hayakawa GG, Ozelo MC. Gene therapy for hemophilia: looking beyond factor expression. Exp Biol Med (Maywood) 2022; 247:2223-2232. [PMID: 36691324 PMCID: PMC9899988 DOI: 10.1177/15353702221147565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hemophilia A (factor VIII [FVIII] deficiency) and hemophilia B (factor IX [FIX] deficiency) are the X-linked recessive bleeding disorders that clinically manifest with recurrent bleeding, predominantly into muscles and joints. In its severe presentation, when factor activity is less than 1% of normal, hemophilia presents with spontaneous musculoskeletal bleeds and may progress to debilitating chronic arthropathy. Management of hemophilia has changed profoundly in the past decades. From on-demand to prophylactic factor concentrate replacement, the treatment goal shifted from controlling bleeds to preventing bleeds and improving quality of life. In this new scenario, gene therapy has arisen as a paradigm-changing therapeutic option, a one-time treatment with the potential to achieve sustained coagulation FVIII or FIX expression even within the normal range. This review discusses the critical impact of adeno-associated virus (AAV) gene transfer in hemophilia care, including the recent clinical outcomes, changes in disease perceptions, and its treatment burden. We also discuss the challenging scenario of the AAV-directed immune response in the clinical setting and potential strategies to improve the long-lasting efficacy of hemophilia gene therapy efficacy.
Collapse
Affiliation(s)
- Gabriela G Yamaguti-Hayakawa
- Department of Internal Medicine,
School of Medical Sciences, University of Campinas, UNICAMP, Campinas
13083-878, Brazil,Hemocentro UNICAMP, University of
Campinas, Campinas 13083-878, Brazil
| | - Margareth C Ozelo
- Department of Internal Medicine,
School of Medical Sciences, University of Campinas, UNICAMP, Campinas
13083-878, Brazil,Hemocentro UNICAMP, University of
Campinas, Campinas 13083-878, Brazil,Margareth C Ozelo.
| |
Collapse
|
10
|
Abstract
Gene therapy is an exciting therapeutic concept that offers the promise of a cure for an array of inherited and acquired disorders. The liver has always been a key target for gene therapy as it controls essential biological processes including digestion, metabolism, detoxification, immunity and blood coagulation. Metabolic disorders of hepatic origin number several hundreds, and for many, liver transplantation remains the only cure. Liver-targeted gene therapy is an attractive treatment modality for many of these conditions. After years of failure, substantial progress in this field in the last decade has resulted in promising clinical efficacy and safety in patients with monogenetic disorders. Glybera was the first liver targeted gene therapy to be approved for patients with lipoprotein lipsase deficiency. Now two more products are on the verge of being approved. Roctavian, the first gene therapy for treatment for hemophilia A, has received a favourable opinion from the European Medicines agency (EMA). Another, Etranacogene dezaparvovec (AMT-061) for hemophilia B is also in the final stages of approval. A number of other liver targeted gene therapy products are at an advanced stage of development, thus heralding a new era of potentially curative molecular medicine. This review explores the recent clinical advances in liver targeted gene therapy as well as the challenges that need to be overcome for the widespread adoption of this new treatment paradigm.
Collapse
Affiliation(s)
- Amit C Nathwani
- University College London Cancer Institute, KD:HT Centre, The Royal Free Hospital, Pond Street, London, United Kingdom of Great Britain and Northern Ireland, NW3 2QG;
| | - Jennifer McIntosh
- University College London, London, London, United Kingdom of Great Britain and Northern Ireland;
| | - Rose Sheridan
- Freeline Therapeutics, Stevenage, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
11
|
Olivieri M, Simpson M, Yan S, Fedorovsky J, Zhang X, Tomic R, Pinachyan K, Mancuso ME. Analysis of pooled real-world data from Germany, Italy, and the United States of rVIII-SingleChain compared with standard- and long-acting FVIII products for prophylaxis of hemophilia A. Curr Med Res Opin 2022; 38:1133-1139. [PMID: 35387548 DOI: 10.1080/03007995.2022.2062180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To evaluate real-world annualized bleeding rates (ABRs), dosing frequency, and factor consumption of four recombinant FVIII (rFVIII) products using pooled data from centers in the US, Germany, and Italy. METHODS De-identified patient medical chart data were collected from 48 hemophilia treatment centers in the US, Germany, and Italy. Patients included in this analysis had hemophilia A and were treated with rVIII-SingleChain, rFVIIIFc, octocog alfa, or BAY 81-8973 for ≥12 weeks. Where possible, patient selection considered age and disease severity in order to balance patient groups across products. Summary statistics were presented descriptively by product for dosing frequency, consumption, ABR/annualized spontaneous bleeding rate (AsBR), and corresponding percentage of patients with zero bleeds. Logistic regression was performed for patients with zero bleeds or zero spontaneous bleeds (vs. patients with any such bleeds). Generalized linear model regression was performed for ABR, AsBR, and consumption. All regression models included the product variable for comparison as well as additional independent variables for adjustment (age, weight, severity, and country for the consumption model, with the addition of consumption for the bleeding outcomes models). RESULTS Overall, 616 patients were included (rVIII-SingleChain, n = 129; rFVIIIFc, n = 159; octocog alfa, n = 181; BAY 81-8973, n = 147). Dosing frequency was ≤2 times a week for 65.9%, 75.5%, 25.4%, and 40.1% of patients treated with rVIII-SingleChain, rFVIIIFc, octocog alfa, and BAY 81-8973, respectively. ABRs were not significantly different among products, with mean (median) values of 1.1 (0.0), 1.0 (0.0), 1.4 (1.0), and 1.9 (1.0) for rVIII-SingleChain, rFVIIIFc, octocog alfa, and BAY 81-8973, respectively. The percentage of patients with zero bleeds was comparable between rVIII-SingleChain and rFVIIIFc (59.7% vs. 62.3%; p =.916) and significantly higher for rVIII-SingleChain compared with octocog alfa (p <.001) and BAY 81-8973 (p =.003). Comparison of mean weekly consumption showed: rVIII-SingleChain (83.0 IU/kg/week) vs. rFVIIIFc (96.9; p =.055) and significantly lower for rVIII-SingleChain vs. octocog alfa (108.6; p <.001) and BAY 81-8973 (104.3; p =.001). The median values for weekly consumption were 85.7, 90.1, 100.1, and 98.5 IU/kg/week for rVIII-SingleChain, rFVIIIFc, octocog alfa, and BAY 91-8973, respectively. Similar trends were observed for all outcomes when analyzing the subgroups of patients aged ≥12 years and patients with severe disease (all age and ≥12 years). CONCLUSIONS rVIII-SingleChain prophylaxis may provide improved bleed protection, less frequent dosing, and lower consumption compared with standard-acting FVIII products, and comparable protection and consumption to the other long-acting FVIII product, in patients with hemophilia A.
Collapse
Affiliation(s)
- Martin Olivieri
- Pediatric Thrombosis and Hemostasis Unit, Pediatric Hemophilia Center, Dr. von Hauner Children's Hospital, LMU Munich, Munich, Germany
| | - Mindy Simpson
- Rush Hemophilia and Thrombophilia Center, Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | | | - Maria Elisa Mancuso
- Center for Thrombosis and Hemorrhagic Diseases, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
12
|
Croteau SE. Hemophilia A/B. Hematol Oncol Clin North Am 2022; 36:797-812. [DOI: 10.1016/j.hoc.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Ozelo MC, Yamaguti‐Hayakawa GG. Impact of novel hemophilia therapies around the world. Res Pract Thromb Haemost 2022; 6:e12695. [PMID: 35434467 PMCID: PMC9004233 DOI: 10.1002/rth2.12695] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022] Open
Abstract
Hemophilia A and B are hereditary bleeding disorders, characterized by factor VIII or IX deficiencies, respectively. For many decades, prophylaxis with coagulation factor concentrates (replacement therapy) was the standard‐of‐care approach in hemophilia. Since the 1950s, when prophylaxis started, factor concentrates have been improved with virus inactivation and molecule modification to extend its half‐life. The past years have brought an intense revolution in hemophilia care, with the development of nonfactor therapy and gene therapy. Emicizumab is the first and only nonreplacement agent to be licensed for prophylaxis in people with hemophilia A, and real‐world data show similar efficacy and safety from the pivotal studies. Other nonreplacement agents and gene therapy have ongoing studies with promising results. Innovative approaches, like subcutaneous factor VIII and lipid nanoparticles, are in the preclinical phase. These novel agents, such as extended half‐life concentrates and emicizumab, have been available in resource‐constrained countries through the constant efforts of the World Federation of Haemophilia Humanitarian Aid Program. Despite the wide range of new approaches and therapies, the main challenge remains the same: to guarantee treatment for all. In this article, we discuss the evolution of hemophilia care, global access to hemophilia treatment, and the current and future strategies that are now under development. Finally, we summarize relevant new data on this topic presented at the ISTH 2021 virtual congress.
Collapse
Affiliation(s)
- Margareth C. Ozelo
- Hemocentro UNICAMP University of Campinas Campinas Brazil
- Department of Internal Medicine School of Medical Sciences University of Campinas UNICAMP Campinas Brazil
| | - Gabriela G. Yamaguti‐Hayakawa
- Hemocentro UNICAMP University of Campinas Campinas Brazil
- Department of Internal Medicine School of Medical Sciences University of Campinas UNICAMP Campinas Brazil
| |
Collapse
|
14
|
Sayed N, Allawadhi P, Khurana A, Singh V, Navik U, Pasumarthi SK, Khurana I, Banothu AK, Weiskirchen R, Bharani KK. Gene therapy: Comprehensive overview and therapeutic applications. Life Sci 2022; 294:120375. [PMID: 35123997 DOI: 10.1016/j.lfs.2022.120375] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023]
Abstract
Gene therapy is the product of man's quest to eliminate diseases. Gene therapy has three facets namely, gene silencing using siRNA, shRNA and miRNA, gene replacement where the desired gene in the form of plasmids and viral vectors, are directly administered and finally gene editing based therapy where mutations are modified using specific nucleases such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulatory interspaced short tandem repeats (CRISPR)/CRISPR-associated protein (Cas)-associated nucleases. Transfer of gene is either through transformation where under specific conditions the gene is directly taken up by the bacterial cells, transduction where a bacteriophage is used to transfer the genetic material and lastly transfection that involves forceful delivery of gene using either viral or non-viral vectors. The non-viral transfection methods are subdivided into physical, chemical and biological. The physical methods include electroporation, biolistic, microinjection, laser, elevated temperature, ultrasound and hydrodynamic gene transfer. The chemical methods utilize calcium- phosphate, DAE-dextran, liposomes and nanoparticles for transfection. The biological methods are increasingly using viruses for gene transfer, these viruses could either integrate within the genome of the host cell conferring a stable gene expression, whereas few other non-integrating viruses are episomal and their expression is diluted proportional to the cell division. So far, gene therapy has been wielded in a plethora of diseases. However, coherent and innocuous delivery of genes is among the major hurdles in the use of this promising therapy. Hence this review aims to highlight the current options available for gene transfer along with the advantages and limitations of every method.
Collapse
Affiliation(s)
- Nilofer Sayed
- Department of Pharmacy, Pravara Rural Education Society's (P.R.E.S.'s) College of Pharmacy, Shreemati Nathibai Damodar Thackersey (SNDT) Women's University, Nashik 400020, Maharashtra, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Roorkee, Roorkee, Uttarakhand 247667, India
| | - Amit Khurana
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal 506166, Telangana, India; Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Vishakha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT), Roorkee, Roorkee, Uttarakhand 247667, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | | | - Isha Khurana
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh 160014, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Rajendranagar, Hyderabad 500030, Telangana, India
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), PVNRTVU, Mamnoor, Warangal 506166, Telangana, India.
| |
Collapse
|
15
|
Cantore A, Fraldi A, Meneghini V, Gritti A. In vivo Gene Therapy to the Liver and Nervous System: Promises and Challenges. Front Med (Lausanne) 2022; 8:774618. [PMID: 35118085 PMCID: PMC8803894 DOI: 10.3389/fmed.2021.774618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/16/2021] [Indexed: 12/02/2022] Open
Abstract
In vivo genetic engineering has recently shown remarkable potential as a novel effective treatment for an ever-growing number of diseases, as also witnessed by the recent marketing authorization of several in vivo gene therapy products. In vivo genetic engineering comprises both viral vector-mediated gene transfer and the more recently developed genome/epigenome editing strategies, as long as they are directly administered to patients. Here we first review the most advanced in vivo gene therapies that are commercially available or in clinical development. We then highlight the major challenges to be overcome to fully and broadly exploit in vivo gene therapies as novel medicines, discussing some of the approaches that are being taken to address them, with a focus on the nervous system and liver taken as paradigmatic examples.
Collapse
Affiliation(s)
- Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Alessio Cantore
| | - Alessandro Fraldi
- CEINGE Biotecnologie Avanzate, Naples, Italy
- Department of Translational Medicine, University of Naples “Federico II”, Naples, Italy
| | - Vasco Meneghini
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Angela Gritti
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
16
|
Pipe SW, Gonen-Yaacovi G, Segurado OG. Hemophilia A Gene Therapy: Current and Next-Generation Approaches. Expert Opin Biol Ther 2021; 22:1099-1115. [PMID: 34781798 DOI: 10.1080/14712598.2022.2002842] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION : Hemophilia comprises a group of X-linked hemorrhagic disorders that result from a deficiency of coagulation factors. The disorder affects mainly males and leads to chronic pain, joint deformity, reduced mobility, and increased mortality. Current therapies require frequent administration of replacement clotting factors, but the emergence of alloantibodies (inhibitors) diminishes their efficacy. New therapies are being developed to produce the deficient clotting factors and prevent the emergence of inhibitors. AREAS COVERED : This article provides an update on the characteristics and disease pathophysiology of hemophilia A, as well as current treatments, with a special focus on ongoing clinical trials related to gene replacement therapies. EXPERT OPINION : Gene replacement therapies provide safe, durable, and stable transgene expression while avoiding the challenges of clotting factor replacement therapies in patients with hemophilia. Improving the specificity of the viral construct and decreasing the therapeutic dose are critical toward minimizing cellular stress, induction of the unfolded protein response, and the resulting loss of protein production in liver cells. Next-generation gene therapies incorporating chimeric DNA sequences in the transgene can increase clotting factor synthesis and secretion, and advance the efficacy, safety, and durability of gene replacement therapy for hemophilia A as well as other blood clotting disorders.
Collapse
|
17
|
Abstract
Haemophilia is an inherited bleeding disorder in which the haemostatic defect results from deficiency of coagulation factor VIII (FVIII) in haemophilia A or factor IX (FIX) in haemophilia B. Traditional treatments for haemophilia have largely worked by directly replacing the missing coagulation factor, but face challenges due to the short half-life of FVIII and FIX, the need for frequent intravenous access and development of neutralising antibodies to coagulation factors (inhibitors). Recent advances in haemophilia therapy have worked to eliminate these challenges. Half-life extension of factor concentrates has lengthened the time needed between infusions, enhancing quality of life. Subcutaneous administration of therapeutics utilising alternative mechanisms to overcome inhibitors have expanded the options to prevent bleeding. Finally, initial successes with gene therapy offer a cautious hope for durable cure. In the present review, we will discuss currently available treatments, as well as highlight therapeutics in various stages of clinical development for the treatment of haemophilia A and B. In this review, we present therapies that are currently clinically available and highlight therapeutics that are in various stages of clinical development for the treatment of haemophilia A and B.
Collapse
Affiliation(s)
- Hannah Fassel
- Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
18
|
Rodríguez-Merchán EC, De Pablo-Moreno JA, Liras A. Gene Therapy in Hemophilia: Recent Advances. Int J Mol Sci 2021; 22:ijms22147647. [PMID: 34299267 PMCID: PMC8306493 DOI: 10.3390/ijms22147647] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Hemophilia is a monogenic mutational disease affecting coagulation factor VIII or factor IX genes. The palliative treatment of choice is based on the use of safe and effective recombinant clotting factors. Advanced therapies will be curative, ensuring stable and durable concentrations of the defective circulating factor. Results have so far been encouraging in terms of levels and times of expression using mainly adeno-associated vectors. However, these therapies are associated with immunogenicity and hepatotoxicity. Optimizing the vector serotypes and the transgene (variants) will boost clotting efficacy, thus increasing the viability of these protocols. It is essential that both physicians and patients be informed about the potential benefits and risks of the new therapies, and a register of gene therapy patients be kept with information of the efficacy and long-term adverse events associated with the treatments administered. In the context of hemophilia, gene therapy may result in (particularly indirect) cost savings and in a more equitable allocation of treatments. In the case of hemophilia A, further research is needed into how to effectively package the large factor VIII gene into the vector; and in the case of hemophilia B, the priority should be to optimize both the vector serotype, reducing its immunogenicity and hepatotoxicity, and the transgene, boosting its clotting efficacy so as to minimize the amount of vector administered and decrease the incidence of adverse events without compromising the efficacy of the protein expressed.
Collapse
Affiliation(s)
- E. Carlos Rodríguez-Merchán
- Osteoarticular Surgery Research, Hospital La Paz Institute for Health Research–IdiPAZ (La Paz University Hospital—Autonomous University of Madrid), 28046 Madrid, Spain;
| | - Juan Andres De Pablo-Moreno
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Antonio Liras
- Department of Genetic, Physiology and Microbiology, Biology School, Complutense University of Madrid, 28040 Madrid, Spain;
- Correspondence:
| |
Collapse
|
19
|
Russell AL, Prince C, Lundgren TS, Knight KA, Denning G, Alexander JS, Zoine JT, Spencer HT, Chandrakasan S, Doering CB. Non-genotoxic conditioning facilitates hematopoietic stem cell gene therapy for hemophilia A using bioengineered factor VIII. Mol Ther Methods Clin Dev 2021; 21:710-727. [PMID: 34141826 PMCID: PMC8181577 DOI: 10.1016/j.omtm.2021.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/29/2021] [Indexed: 01/09/2023]
Abstract
Hematopoietic stem and progenitor cell (HSPC) lentiviral gene therapy is a promising strategy toward a lifelong cure for hemophilia A (HA). The primary risks associated with this approach center on the requirement for pre-transplantation conditioning necessary to make space for, and provide immune suppression against, stem cells and blood coagulation factor VIII, respectively. Traditional conditioning agents utilize genotoxic mechanisms of action, such as DNA alkylation, that increase risk of sterility, infection, and developing secondary malignancies. In the current study, we describe a non-genotoxic conditioning protocol using an immunotoxin targeting CD117 (c-kit) to achieve endogenous hematopoietic stem cell depletion and a cocktail of monoclonal antibodies to provide transient immune suppression against the transgene product in a murine HA gene therapy model. This strategy provides high-level engraftment of hematopoietic stem cells genetically modified ex vivo using recombinant lentiviral vector (LV) encoding a bioengineered high-expression factor VIII variant, termed ET3. Factor VIII procoagulant activity levels were durably elevated into the normal range and phenotypic correction achieved. Furthermore, no immunological rejection or development of anti-ET3 immunity was observed. These preclinical data support clinical translation of non-genotoxic antibody-based conditioning in HSPC LV gene therapy for HA.
Collapse
Affiliation(s)
- Athena L. Russell
- Graduate Program in Genetics and Molecular Biology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Chengyu Prince
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Taran S. Lundgren
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Kristopher A. Knight
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | | | - Jordan S. Alexander
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jaquelyn T. Zoine
- Graduate Program in Cancer Biology, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - H. Trent Spencer
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Expression Therapeutics, LLC, Tucker, GA 30084, USA
| | - Shanmuganathan Chandrakasan
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christopher B. Doering
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Expression Therapeutics, LLC, Tucker, GA 30084, USA
| |
Collapse
|
20
|
Hemophilia Gene Therapy: Approaching the First Licensed Product. Hemasphere 2021; 5:e540. [PMID: 33604517 PMCID: PMC7886458 DOI: 10.1097/hs9.0000000000000540] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
The clinical potential of hemophilia gene therapy has now been pursued for the past 30 years, and there is a realistic expectation that this goal will be achieved within the next couple of years with the licensing of a gene therapy product. While recent late phase clinical trials of hemophilia gene therapy have shown promising results, there remain a number of issues that require further attention with regard to both efficacy and safety of this therapeutic approach. In this review, we present information relating to the current status of the field and focus attention on the unanswered questions for hemophilia gene therapy and the future challenges that need to be overcome to enable the widespread application of this treatment paradigm.
Collapse
|
21
|
Peixoto C, Merten O. Biomanufacturing of Gene Therapy Vectors. Biotechnol J 2021. [DOI: 10.1002/biot.202000614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Cristina Peixoto
- iBET Instituto de Biologia Experimental e Tecnológica Oeiras Portugal
| | | |
Collapse
|
22
|
Cantore A, Naldini L. WFH State-of-the-art paper 2020: In vivo lentiviral vector gene therapy for haemophilia. Haemophilia 2020; 27 Suppl 3:122-125. [PMID: 32537776 PMCID: PMC7984334 DOI: 10.1111/hae.14056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Over the last decade, the development of new treatments for haemophilia has progressed at a very rapid pace. Despite all the promising advances in protein products, the prospect offered by gene therapy of a single potentially lifelong treatment remains attractive for people with haemophilia. Transfer to the liver of coagulation factor VIII (FVIII) or factor IX (FIX) transgenes has indeed the potential to stably restore the dysfunctional coagulation process. Recombinant adeno‐associated virus (AAV)‐derived vectors are widely employed for liver‐directed gene therapy, given their very good efficacy and safety profile, shown in several preclinical and clinical studies. However, there are some limitations associated with AAV vectors, such as their predominantly episomal nature in the nucleus of target cells and the widespread pre‐existing immunity against the parental virus in humans. By contrast, HIV‐derived lentiviral vectors (LV) integrate into the target cell chromatin and are maintained as the cells duplicate their genome, a potential advantage for establishing long‐term expression especially in paediatric patients, in which the liver undergoes substantial growth. Systemic administration of LV allowed stable multi‐year transgene expression in the liver of mice and dogs. More recently, improved phagocytosis‐shielded LV were generated, which, following intravenous administration to non‐human primates, showed selective targeting of liver and spleen and enhanced hepatocyte gene transfer, achieving up to supra‐normal activity of both human FVIII and FIX transgenes. These studies support further preclinical assessment and clinical evaluation of in vivo liver‐directed LV gene therapy for haemophilia.
Collapse
Affiliation(s)
- Alessio Cantore
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,"Vita Salute San Raffaele" University, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.,"Vita Salute San Raffaele" University, Milan, Italy
| |
Collapse
|