1
|
Coppola G, Ambrosini A. What has neurophysiology revealed about migraine and chronic migraine? HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:117-133. [PMID: 38043957 DOI: 10.1016/b978-0-12-823356-6.00003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Since the first electroencephalographic recordings obtained by Golla and Winter in 1959, researchers have used a variety of neurophysiological techniques to determine the mechanisms underlying recurrent migraine attacks. Neurophysiological methods have shown that the brain during the interictal phase of an episodic migraine is characterized by a general hyperresponsiveness to sensory stimuli, a malfunction of the monoaminergic brainstem circuits, and by functional alterations of the thalamus and thalamocortical loop. All of these alterations vary plastically during the phases of the migraine cycle and interictally with the days following the attack. Both episodic migraineurs recorded during an attack and chronic migraineurs are characterized by a general increase in the cortical amplitude response to peripheral sensory stimuli; this is an electrophysiological hallmark of a central sensitization process that is further reinforced through medication overuse. Considering the large-scale functional involvement and the main roles played by the brainstem-thalamo-cortical network in selection, elaboration, and learning of relevant sensory information, future research should move from searching for one specific primary site of dysfunction at the macroscopic level, to the chronic, probably genetically determined, molecular dysfunctions at the synaptic level, responsible for short- and long-term learning mechanisms.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino - I.C.O.T., Latina, Italy
| | | |
Collapse
|
2
|
Impaired Pain Processing at a Brainstem Level Is Involved in Maladaptive Neuroplasticity in Patients with Chronic Complex Regional Pain Syndrome. Int J Mol Sci 2022; 23:ijms232315368. [PMID: 36499694 PMCID: PMC9740440 DOI: 10.3390/ijms232315368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammatory mechanisms and maladaptive neuroplasticity underlie the progression of complex regional pain syndrome (CRPS), which is prototypical of central neuropathic pain conditions. While cortical maladaptive alterations are well described, little is known about the contribution of the brainstem to the pathophysiology. This study investigates the role of pain-modulatory brainstem pathways in CRPS using the nociceptive blink reflex (nBR), which not only provides a direct read-out of brainstem excitability and habituation to painful stimuli but may also be suitable for use as a diagnostic biomarker for CRPS. Thirteen patients with CRPS and thirteen healthy controls (HCs) participated in this prospective case-control study investigating the polysynaptic trigemino-cervical (R2) nBR response. The R2 area and its habituation were assessed following repeated supraorbital electrical stimulation. Between-group comparisons included evaluations of diagnostic characteristics as a potential biomarker for the disease. Patients with CRPS showed a substantial decrease in habituation on the stimulated (Cohen's d: 1.3; p = 0.012) and the non-stimulated side (Cohen's d: 1.1; p = 0.04). This is the first study to reveal altered nBR habituation as a pathophysiological mechanism and potential diagnostic biomarker in CRPS. We confirmed previous findings of altered nBR excitability, but the diagnostic accuracy was inferior. Future studies should investigate the nBR as a marker of progression to central mechanisms in CRPS and as a biomarker to predict treatment response or prognosis.
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW In this review, we illustrate and discuss the recent findings regarding the epidemiology and pathophysiology of migraine triggers and their implications in clinical practice. RECENT FINDINGS Data from the literature suggest that individual triggers fail to provoke migraine attack in experimental settings. It is therefore possible that more triggers acting in combination are needed to induce an attack by promoting some degree of brain dysfunction and thus increasing the vulnerability to migraine. Caution is however needed, because some of the factors rated as triggers by the patients may actually be a component of the clinical picture of migraine attacks. SUMMARY Trigger factors of migraine are endogenous or exogenous elements associated with an increased likelihood of an attack in a short period of time and are reported by up to 75.9% of patients. Triggers must be differentiated from premonitory symptoms that precede the headache phase but do not have a causative role in attack provocation, being rather the very first manifestations of the attack. Identification of real triggers is an important step in the management of migraine. Vice versa, promoting an active avoiding behaviour toward factors whose role as triggers is not certain would be ineffective and even frustrating for patients.
Collapse
|
4
|
Expression of Selected microRNAs in Migraine: A New Class of Possible Biomarkers of Disease? Processes (Basel) 2021. [DOI: 10.3390/pr9122199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Preliminary but convergent findings suggest a role for microRNAs (miRNAs) in the generation and maintenance of chronic pain and migraine. Initial observations showed that serum levels of miR-382-5p and miR-34a-5p expression were increased in serum during the migraine attack, with miR-382-5p increasing in the interictal phase as well. By contrast, miR-30a-5p levels were lower in migraine patients compared to healthy controls. Of note, antimigraine treatments proved to be capable of influencing the expression of these miRNAs. Altogether, these observations suggest that miRNAs may represent migraine biomarkers, but several points are yet to be elucidated. A major concern is that these miRNAs are altered in a broad spectrum of painful and non-painful conditions, and thus it is not possible to consider them as truly “migraine-specific” biomarkers. We feel that these miRNAs may represent useful tools to uncover and define different phenotypes across the migraine spectrum with different treatment susceptibilities and clinical features, although further studies are needed to confirm our hypothesis. In this narrative review we provide an update and a critical analysis of available data on miRNAs and migraines in order to propose possible interpretations. Our main objective is to stimulate research in an area that holds promise when it comes to providing reliable biomarkers for theoretical and practical scientific advances.
Collapse
|
5
|
Kaiser EA, McAdams H, Igdalova A, Haggerty EB, Cucchiara BL, Brainard DH, Aguirre GK. Reflexive Eye Closure in Response to Cone and Melanopsin Stimulation: A Study of Implicit Measures of Light Sensitivity in Migraine. Neurology 2021; 97:e1672-e1680. [PMID: 34493620 DOI: 10.1212/wnl.0000000000012734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/16/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To quantify interictal photophobia in migraine with and without aura using reflexive eye closure as an implicit measure of light sensitivity and to assess the contribution of melanopsin and cone signals to these responses. METHODS Participants were screened to meet criteria for 1 of 3 groups: headache-free (HF) controls, migraine without aura (MO), and migraine with visual aura (MA). MO and MA participants were included if they endorsed ictal and interictal photophobia. Exclusion criteria included impaired vision, inability to collect usable pupillometry, and history of either head trauma or seizure. Participants viewed light pulses that selectively targeted melanopsin, the cones, or their combination during recording of orbicularis oculi EMG (OO-EMG) and blinking activity. RESULTS We studied 20 participants in each group. MA and MO groups reported increased visual discomfort to light stimuli (discomfort rating, 400% contrast, MA: 4.84 [95% confidence interval 0.33, 9.35]; MO: 5.23 [0.96, 9.50]) as compared to HF controls (2.71 [0, 6.47]). Time course analysis of OO-EMG and blinking activity demonstrated that reflexive eye closure was tightly coupled to the light pulses. The MA group had greater OO-EMG and blinking activity in response to these stimuli (EMG activity, 400% contrast: 42.9%Δ [28.4, 57.4]; blink activity, 400% contrast: 11.2% [8.8, 13.6]) as compared to the MO (EMG activity, 400% contrast: 9.9%Δ [5.8, 14.0]; blink activity, 400% contrast: 4.7% [3.5, 5.9]) and HF control (EMG activity, 400% contrast: 13.2%Δ [7.1, 19.3]; blink activity, 400% contrast: 4.5% [3.1, 5.9]) groups. DISCUSSION Our findings suggest that the intrinsically photosensitive retinal ganglion cells (ipRGCs), which integrate melanopsin and cone signals, provide the afferent input for light-induced reflexive eye closure in a photophobic state. Moreover, we find a dissociation between implicit and explicit measures of interictal photophobia depending on a history of visual aura in migraine. This implies distinct pathophysiology in forms of migraine, interacting with separate neural pathways by which the amplification of ipRGC signals elicits implicit and explicit signs of visual discomfort.
Collapse
Affiliation(s)
- Eric A Kaiser
- From the Departments of Neurology (E.A.K., A.I., E.B.H., B.L.C., G.K.A.) and Neuroscience (H.M.), Perelman School of Medicine, and Department of Psychology (D.H.B.), University of Pennsylvania, Philadelphia.
| | - Harrison McAdams
- From the Departments of Neurology (E.A.K., A.I., E.B.H., B.L.C., G.K.A.) and Neuroscience (H.M.), Perelman School of Medicine, and Department of Psychology (D.H.B.), University of Pennsylvania, Philadelphia
| | - Aleksandra Igdalova
- From the Departments of Neurology (E.A.K., A.I., E.B.H., B.L.C., G.K.A.) and Neuroscience (H.M.), Perelman School of Medicine, and Department of Psychology (D.H.B.), University of Pennsylvania, Philadelphia
| | - Edda B Haggerty
- From the Departments of Neurology (E.A.K., A.I., E.B.H., B.L.C., G.K.A.) and Neuroscience (H.M.), Perelman School of Medicine, and Department of Psychology (D.H.B.), University of Pennsylvania, Philadelphia
| | - Brett L Cucchiara
- From the Departments of Neurology (E.A.K., A.I., E.B.H., B.L.C., G.K.A.) and Neuroscience (H.M.), Perelman School of Medicine, and Department of Psychology (D.H.B.), University of Pennsylvania, Philadelphia
| | - David H Brainard
- From the Departments of Neurology (E.A.K., A.I., E.B.H., B.L.C., G.K.A.) and Neuroscience (H.M.), Perelman School of Medicine, and Department of Psychology (D.H.B.), University of Pennsylvania, Philadelphia
| | - Geoffrey K Aguirre
- From the Departments of Neurology (E.A.K., A.I., E.B.H., B.L.C., G.K.A.) and Neuroscience (H.M.), Perelman School of Medicine, and Department of Psychology (D.H.B.), University of Pennsylvania, Philadelphia
| |
Collapse
|
6
|
Abstract
Transient disturbances in neurologic function are disturbing features of migraine attacks. Aura types include binocular visual, hemi-sensory, language and unilateral motor symptoms. Because of the gradual spreading quality of visual and sensory symptoms, they were thought to arise from the cerebral cortex. Motor symptoms previously included as a type of migraine aura were reclassified as a component of hemiplegic migraine. ICHD-3 criteria of the International Headache Society, added brainstem aura and retinal aura as separate subtypes. The susceptibility to all types of aura is likely to be included by complex and perhaps epigenetic factors.
Collapse
Affiliation(s)
- Rod Foroozan
- Baylor College of Medicine, 6565 Fannin NC-205, Houston, TX 77030, USA.
| | - F Michael Cutrer
- Mayo Clinic, 200 First Street, Southwest, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Coppola G, Di Lorenzo C, Parisi V, Lisicki M, Serrao M, Pierelli F. Clinical neurophysiology of migraine with aura. J Headache Pain 2019; 20:42. [PMID: 31035929 PMCID: PMC6734510 DOI: 10.1186/s10194-019-0997-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/16/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The purpose of this review is to provide a comprehensive overview of the findings of clinical electrophysiology studies aimed to investigate changes in information processing of migraine with aura patients. MAIN BODY Abnormalities in alpha rhythm power and symmetry, the presence of slowing, and increased information flow in a wide range of frequency bands often characterize the spontaneous EEG activity of MA. Higher grand-average cortical response amplitudes, an increased interhemispheric response asymmetry, and lack of amplitude habituation were less consistently demonstrated in response to any kind of sensory stimulation in MA patients. Studies with single-pulse and repetitive transcranial magnetic stimulation (TMS) have reported abnormal cortical responsivity manifesting as greater motor evoked potential (MEP) amplitude, lower threshold for phosphenes production, and paradoxical effects in response to both depressing or enhancing repetitive TMS methodologies. Studies of the trigeminal system in MA are sparse and the few available showed lack of blink reflex habituation and abnormal findings on SFEMG reflecting subclinical, probably inherited, dysfunctions of neuromuscular transmission. The limited studies that were able to investigate patients during the aura revealed suppression of evoked potentials, desynchronization in extrastriate areas and in the temporal lobe, and large variations in direct current potentials with magnetoelectroencephalography. Contrary to what has been observed in the most common forms of migraine, patients with familial hemiplegic migraine show greater habituation in response to visual and trigeminal stimuli, as well as a higher motor threshold and a lower MEP amplitude than healthy subjects. CONCLUSION Since most of the electrophysiological abnormalities mentioned above were more frequently present and had a greater amplitude in migraine with aura than in migraine without aura, neurophysiological techniques have been shown to be of great help in the search for the pathophysiological basis of migraine aura.
Collapse
Affiliation(s)
- Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79–04100 Latina, Italy
| | | | | | - Marco Lisicki
- Headache Research Unit, University of Liège, Department of Neurology-Citadelle Hospital, Boulevard du Douzième de Ligne, 1-400 Liège, Belgium
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79–04100 Latina, Italy
| | - Francesco Pierelli
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Corso della Repubblica, 79–04100 Latina, Italy
- IRCCS – Neuromed, Via Atinense, 18-86077 Pozzilli, (IS) Italy
| |
Collapse
|
8
|
Marucco E, Lisicki M, Magis D. Electrophysiological Characteristics of the Migraine Brain: Current Knowledge and Perspectives. Curr Med Chem 2018; 26:6222-6235. [PMID: 29956611 DOI: 10.2174/0929867325666180627130811] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/16/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Despite pain being its most prominent feature, migraine is primarily a disorder of sensory processing. Electrophysiology-based research in the field has consistently developed over the last fifty years. OBJECTIVE To summarize the current knowledge on the electrophysiological characteristics of the migraine brain, and discuss perspectives. METHODS We critically reviewed the literature on the topic to present and discuss articles selected on the basis of their significance and/or novelty. RESULTS Physiologic fluctuations within time, between-subject differences, and methodological issues account as major limitations of electrophysiological research in migraine. Nonetheless, several abnormalities revealed through different approaches have been described in the literature. Altogether, these results are compatible with an abnormal state of sensory processing. PERSPECTIVES The greatest contribution of electrophysiological testing in the future will most probably be the characterization of sub-groups of migraine patients sharing specific electrophysiological traits. This should serve as strategy towards personalized migraine treatment. Incorporation of novel methods of analysis would be worthwhile.
Collapse
Affiliation(s)
- Erica Marucco
- University of Liege - Headache Research Unit Liege, Liege, Belgium
| | - Marco Lisicki
- University of Liege - Headache Research Unit Liege, Liege, Belgium
| | - Delphine Magis
- Centre Hospitalier Universitaire de Liege - Headache Research Unit Liege, Liege, Belgium
| |
Collapse
|
9
|
Perrotta A, Coppola G, Anastasio MG, De Icco R, Ambrosini A, Serrao M, Parisi V, Evangelista M, Sandrini G, Pierelli F. Trait- and Frequency-Dependent Dysfunctional Habituation to Trigeminal Nociceptive Stimulation in Trigeminal Autonomic Cephalalgias. THE JOURNAL OF PAIN 2018; 19:1040-1048. [PMID: 29655843 DOI: 10.1016/j.jpain.2018.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/31/2018] [Accepted: 03/02/2018] [Indexed: 01/03/2023]
Abstract
We investigated whether the stimulation frequency (SF), the pain phases, and different diagnoses of trigeminal autonomic cephalalgias (TACs) may influence the habituation to pain. We studied the habituation of the nociceptive blink reflex R2 responses at different SFs (.05, .1, .2, .3, .5, and 1 Hz), in 28 episodic cluster headache (ECH) patients, 16 during and 12 outside the bout; they were compared with 16 episodic paroxysmal hemicrania (EPH) during the bout and 21 healthy subjects. We delivered 26 electrical stimuli and subdivided stimuli 2 to 26 in 5 blocks of 5 responses for each SF. Habituation values for each SF were expressed as the percentages of the mean area value of second through fifth blocks with respect to the first one. A significant lower mean percentage decrease of the R2 area across all blocks was found at .2 to 1 Hz SF during ECH, outside of the ECH, and EPH compared with healthy subjects. We showed a common frequency-dependent deficit of habituation of trigeminal nociceptive responses at higher SFs in ECH and EPH patients, independently from the disease phase. This abnormal temporal pattern of pain processing may suggest a trait-dependent dysfunction of some underlying pain-related subcortical structures, rather than a state-dependent functional abnormality due to the recurrence of the headache attacks during the active period. PERSPECTIVE TACs showed a frequency-related defective habituation of nociceptive trigeminal responses at the higher SFs, irrespectively of the diagnosis and/or the disease phase. We showed that the clinical similarities in the different subtypes of TACs are in parallel with a trait-dependent dysfunction in pain processing.
Collapse
Affiliation(s)
| | - Gianluca Coppola
- G.B. Bietti Foundation IRCCS, Research Unit of Neurophysiology of Vision and Neurophthalmology, Rome, Italy
| | - Maria Grazia Anastasio
- IRCCS Neuromed, Pozzilli, IS, Italy; Department of Neurology and Psychiatry, "Sapienza" University of Rome, Rome, Italy
| | - Roberto De Icco
- C. Mondino National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | | | - Mariano Serrao
- Unit of Neurorehabilitation, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, ICOT, Latina, Italy
| | - Vincenzo Parisi
- G.B. Bietti Foundation IRCCS, Research Unit of Neurophysiology of Vision and Neurophthalmology, Rome, Italy
| | - Maurizio Evangelista
- Istituto di Anestesiologia, Rianimazione e Terapia del Dolore, Università Cattolica del Sacro Cuore/CIC, Rome, Italy
| | - Giorgio Sandrini
- C. Mondino National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Francesco Pierelli
- IRCCS Neuromed, Pozzilli, IS, Italy; Unit of Neurorehabilitation, Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, ICOT, Latina, Italy
| |
Collapse
|