1
|
Li Y, Yu X, Li P, Li X, Wang L. Characterization of the ferric uptake regulator VaFur regulon and its role in Vibrio anguillarum pathogenesis. Appl Environ Microbiol 2024; 90:e0150824. [PMID: 39382293 PMCID: PMC11577842 DOI: 10.1128/aem.01508-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
The Gram-negative marine bacterium Vibrio anguillarum is able to cause vibriosis with hemorrhagic septicemia in many fish species, and iron acquisition is a critical step for virulence. Despite the fact that genes specific to certain processes of iron transport have been studied, the iron-regulated circuits of the V. anguillarum strains remain poorly understood. In this study, we showed that in V. anguillarum strain 775, iron could affect the expression of a number of critical metabolic pathways and virulence factors. The global iron uptake regulator VaFur is the major actor to control these processes for the bacterium to respond to different iron conditions. A VaFur binding motif was identified to distinguish directly and indirectly regulated targets. The absence of VaFur resulted in the aberrant expression of most iron acquisition determinants under rich-iron conditions. A similar regulation pattern was also observed in the transcription of genes coding for the type VI secretion system. The expression of peroxidase genes is positively controlled by VaFur to prevent iron toxicity, and the deletion of Vafur caused impaired growth in the presence of iron and H2O2. VaFur also upregulates some virulence factors under limited-iron conditions, including metalloprotease EmpA and motility, which are likely critical for the high virulence of V. anguillarum 775. The deletion of VaFur led to reduced swimming motility and decreased extracellular protease activity under limited-iron conditions, thereby leading to attenuated pathogenicity. Our study provides more evidence to better understand the VaFur regulon and its role in the pathogenesis of V. anguillarum.IMPORTANCEVibriosis, the most common disease caused by marine bacteria belonging to the genus Vibrio, leads to massive mortality of economical aquatic organisms in Asia. Iron is one of the most important trace elements, and its acquisition is a critical battle occurring between the host and the pathogen. However, excess iron is harmful to cells, so iron utilization needs to be strictly controlled to adapt to different conditions. This process is mediated by the global iron uptake regulator Fur, which acts as a repressor when iron is replete. On the other hand, free iron in the host is limited, so the reduced virulence of the Δfur mutant should not be directly caused by abnormally regulated iron uptake. The significance of this work lies in uncovering the mechanism by which the deletion of Fur causes reduced virulence in Vibrio anguillarum and identifying the critical virulence factors that function under limited-iron conditions.
Collapse
Affiliation(s)
- Yingjie Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xinran Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Peng Li
- China Rongtong Agricultural Development Group Co. Ltd., Hangzhou, China
| | - Xin Li
- China Rongtong Agricultural Development Group Co. Ltd., Hangzhou, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Fauzia KA, Effendi WI, Alfaray RI, Malaty HM, Yamaoka Y, Mifthussurur M. Molecular Mechanisms of Biofilm Formation in Helicobacter pylori. Antibiotics (Basel) 2024; 13:976. [PMID: 39452242 PMCID: PMC11504965 DOI: 10.3390/antibiotics13100976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Biofilm formation in Helicobacter pylori (H. pylori) helps bacteria survive antibiotic exposure and supports bacterial colonization and persistence in the stomach. Most of the published articles have focused on one aspect of the biofilm. Therefore, we conducted the current study to better understand the mechanism of biofilm formation, how the biofilm contributes to antibiotic resistance, and how the biofilm modifies the medication delivery mechanism. METHODS We conducted a literature review analysis of the published articles on the Helicobacter pylori biofilm between 1998 and 2024 from the PubMed database to retrieve eligible articles. After applying the inclusion and exclusion criteria, two hundred and seventy-three articles were eligible for our study. RESULTS The results showed that biofilm formation starts as adhesion and progresses through micro-colonies, maturation, and dispersion in a planktonic form. Moreover, specific genes modulate each phase of biofilm formation. Few studies have shown that mechanisms, such as quorum sensing and diffusible signal factors, enhance coordination among bacteria when switching from biofilm to planktonic states. Different protein expressions were also observed between planktonic and biofilm strains, and the biofilm architecture was supported by exopolysaccharides, extracellular DNA, and outer membrane vesicles. CONCLUSIONS This infrastructure is responsible for the increased survival of bacteria, especially in harsh environments or in the presence of antibiotics. Therefore, understanding the biofilm formation for H. pylori is crucial. This study illustrates biofilm formation in H. pylori to help improve the treatment of H. pylori infection.
Collapse
Grants
- XXXX Universitas Airlangga
- DK62813 NIH HHS
- 26640114, 221S0002, 16H06279, 15H02657 and 16H05191, 18KK0266, 19H03473, 21H00346, 22H02871, and 23K24133 Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- XXXXX Japan Society for the Promotion of Science Institutional Program for Young Researcher Overseas Visits and the Strategic Funds for the Promotion of Science and Technology Agency (JST)
- xxxx Japanese Government (MEXT) scholarship
- xxxx Japan Agency for Medical Research and Development (AMED) [e-ASIA JRP]
Collapse
Affiliation(s)
- Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency, Bogor 16915, Indonesia;
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Wiwin Is Effendi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya 60131, Indonesia
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine—The Research Center for GLOBAL and LOCAL Infectious Disease (RCGLID), Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (R.I.A.); (Y.Y.)
| | - Hoda M. Malaty
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Univcersitas Airlangga, Surabaya 60286, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine—The Research Center for GLOBAL and LOCAL Infectious Disease (RCGLID), Faculty of Medicine, Oita University, Yufu 879-5593, Japan; (R.I.A.); (Y.Y.)
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
- Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine—Dr. Soetomo Teaching Hospital, Univcersitas Airlangga, Surabaya 60286, Indonesia
| | - Muhammad Mifthussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya 60131, Indonesia
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
3
|
Huang H, Yang H, Feng S, Zhang X, Chen C, Yan H, Li R, Liu M, Lin J, Wen Y, She F. High salt condition alters LPS synthesis and induces the emergence of drug resistance mutations in Helicobacter pylori. Antimicrob Agents Chemother 2024; 68:e0058724. [PMID: 39240098 PMCID: PMC11459920 DOI: 10.1128/aac.00587-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
The burgeoning emergence of drug-resistant Helicobacter pylori strains poses a significant challenge to the clinical success of eradication therapies and is primarily attributed to mutations within drug-targeting genes that lead to antibiotic resistance. This study investigated the effect of high salt conditions on the occurrence of drug-resistance mutations in H. pylori. We found that high salt condition significantly amplifies the frequency of drug resistance mutations in H. pylori. This can be chiefly attributed to our discovery indicating that high salt concentration results in elevated reactive oxygen species (ROS) levels, initiating DNA damage within H. pylori. Mechanistically, high salt condition suppresses lipopolysaccharide (LPS) synthesis gene expression, inducing alterations in the LPS structure and escalating outer membrane permeability. This disruption of LPS synthesis attenuates the expression and activity of SodB, facilitates increased ROS levels, and consequently increases the drug resistance mutation frequency. Impairing LPS synthesis engenders a reduction in intracellular iron levels, leading to diminished holo-Fur activity and increased apo-Fur activity, which represses the expression of SodB directly. Our findings suggest a correlation between high salt intake and the emergence of drug resistance in the human pathogen H. pylori, implying that dietary choices affect the risk of emergence of antimicrobial resistance.IMPORTANCEDrug resistance mutations mainly contribute to the emergence of clinical antibiotic-resistant Helicobacter pylori, a bacterium linked to stomach ulcers and cancer. In this study, we explored how elevated salt conditions influence the emergence of drug resistance in H. pylori. We demonstrate that H. pylori exhibits an increased antibiotic resistance mutation frequency when exposed to a high salt environment. We observed an increase in reactive oxygen species (ROS) under high salt conditions, which can cause DNA damage and potentially lead to mutations. Moreover, our results showed that high salt condition alters the bacterium's lipopolysaccharide (LPS) synthesis, leading to a reduced expression of SodB in a Fur-dependent manner. This reduction, in turn, elevates ROS levels, culminating in a higher frequency of drug-resistance mutations. Our research underscores the critical need to consider environmental influences, such as diet and lifestyle, in managing bacterial infections and combating the growing challenge of antibiotic resistance.
Collapse
Affiliation(s)
- Hongming Huang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Huang Yang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Shunhang Feng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Xiaoyan Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Chu Chen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Hongyu Yan
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Rui Li
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Mengxin Liu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Juan Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Yancheng Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Su-Arcaro C, Liao W, Bieniek K, Constantino MA, Decker SM, Turner BS, Bansil R. Unraveling the Intertwined Effect of pH on Helicobacter pylori Motility and the Microrheology of the Mucin-Based Medium It Swims in. Microorganisms 2023; 11:2745. [PMID: 38004756 PMCID: PMC10673263 DOI: 10.3390/microorganisms11112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
The gastric pathogen, Helicobacter pylori bacteria have to swim across a pH gradient from 2 to 7 in the mucus layer to colonize the gastric epithelium. Previous studies from our group have shown that porcine gastric mucin (PGM) gels at an acidic pH < 4, and H. pylori bacteria are unable to swim in the gel, although their flagella rotate. Changing pH impacts both the rheological properties of gastric mucin and also influences the proton (H+)-pumped flagellar motors of H. pylori as well as their anti-pH sensing receptors. To unravel these intertwined effects of acidic pH on both the viscoelastic properties of the mucin-based mucus as well as the flagellar motors and chemo-receptors of the bacterium, we compared the motility of H. pylori in PGM with that in Brucella broth (BB10) at different pH values using phase contrast microscopy to track the motion of the bacteria. The results show that the distribution of swimming speeds and other characteristics of the bacteria trajectories exhibit pH-dependent differences in both media. The swimming speed exhibits a peak at pH 4 in BB10, and a less pronounced peak at a higher pH of 5 in PGM. At all pH values, the bacteria swam faster and had a longer net displacement in BB10 compared to PGM. While the bacteria were stuck in PGM gels at pH < 4, they swam at these acidic pH values in BB10, although with reduced speed. Decreasing pH leads to a decreased fraction of motile bacteria, with a decreased contribution of the faster swimmers to the distributions of speeds and net displacement of trajectories. The body rotation rate is weakly dependent on pH in BB10, whereas in PGM bacteria that are immobilized in the low pH gel are capable of mechano-sensing and rotate faster. Bacteria can be stuck in the gel in various ways, including the flagella getting entangled in the fibers of the gel or the cell body being stuck to the gel. Our results show that in BB10, swimming is optimized at pH4, reflecting the combined effects of pH sensing by anti-pH tactic receptors and impact on H+ pumping of flagellar motors, while the increase in viscosity of PGM with decreasing pH and gelation below pH 4 lead to further reduction in swimming speed, with optimal swimming at pH 5 and immobilization of bacteria below pH 4.
Collapse
Affiliation(s)
- Clover Su-Arcaro
- Department of Physics, Boston University, Boston, MA 02215, USA; (C.S.-A.); (W.L.); (K.B.); (M.A.C.); (S.M.D.)
| | - Wentian Liao
- Department of Physics, Boston University, Boston, MA 02215, USA; (C.S.-A.); (W.L.); (K.B.); (M.A.C.); (S.M.D.)
| | - Katarzyna Bieniek
- Department of Physics, Boston University, Boston, MA 02215, USA; (C.S.-A.); (W.L.); (K.B.); (M.A.C.); (S.M.D.)
| | - Maira A. Constantino
- Department of Physics, Boston University, Boston, MA 02215, USA; (C.S.-A.); (W.L.); (K.B.); (M.A.C.); (S.M.D.)
| | - Savannah M. Decker
- Department of Physics, Boston University, Boston, MA 02215, USA; (C.S.-A.); (W.L.); (K.B.); (M.A.C.); (S.M.D.)
| | - Bradley S. Turner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Rama Bansil
- Department of Physics, Boston University, Boston, MA 02215, USA; (C.S.-A.); (W.L.); (K.B.); (M.A.C.); (S.M.D.)
| |
Collapse
|
5
|
Freire de Melo F, Marques HS, Rocha Pinheiro SL, Lemos FFB, Silva Luz M, Nayara Teixeira K, Souza CL, Oliveira MV. Influence of Helicobacter pylori oncoprotein CagA in gastric cancer: A critical-reflective analysis. World J Clin Oncol 2022; 13:866-879. [PMID: 36483973 PMCID: PMC9724182 DOI: 10.5306/wjco.v13.i11.866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
Abstract
Gastric cancer is the fifth most common malignancy and third leading cancer-related cause of death worldwide. Helicobacter pylori is a Gram-negative bacterium that inhabits the gastric environment of 60.3% of the world's population and represents the main risk factor for the onset of gastric neoplasms. CagA is the most important virulence factor in H. pylori, and is a translocated oncoprotein that induces morphofunctional modifications in gastric epithelial cells and a chronic inflammatory response that increases the risk of developing precancerous lesions. Upon translocation and tyrosine phosphorylation, CagA moves to the cell membrane and acts as a pathological scaffold protein that simultaneously interacts with multiple intracellular signaling pathways, thereby disrupting cell proliferation, differentiation and apoptosis. All these alterations in cell biology increase the risk of damaged cells acquiring pro-oncogenic genetic changes. In this sense, once gastric cancer sets in, its perpetuation is independent of the presence of the oncoprotein, characterizing a "hit-and-run" carcinogenic mechanism. Therefore, this review aims to describe H. pylori- and CagA-related oncogenic mechanisms, to update readers and discuss the novelties and perspectives in this field.
Collapse
Affiliation(s)
- Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Hanna Santos Marques
- Campus Vitória da Conquista, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Samuel Luca Rocha Pinheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | | - Cláudio Lima Souza
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Brazil
| | | |
Collapse
|
6
|
Insights into the Orchestration of Gene Transcription Regulators in Helicobacter pylori. Int J Mol Sci 2022; 23:ijms232213688. [PMID: 36430169 PMCID: PMC9696931 DOI: 10.3390/ijms232213688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Bacterial pathogens employ a general strategy to overcome host defenses by coordinating the virulence gene expression using dedicated regulatory systems that could raise intricate networks. During the last twenty years, many studies of Helicobacter pylori, a human pathogen responsible for various stomach diseases, have mainly focused on elucidating the mechanisms and functions of virulence factors. In parallel, numerous studies have focused on the molecular mechanisms that regulate gene transcription to attempt to understand the physiological changes of the bacterium during infection and adaptation to the environmental conditions it encounters. The number of regulatory proteins deduced from the genome sequence analyses responsible for the correct orchestration of gene transcription appears limited to 14 regulators and three sigma factors. Furthermore, evidence is accumulating for new and complex circuits regulating gene transcription and H. pylori virulence. Here, we focus on the molecular mechanisms used by H. pylori to control gene transcription as a function of the principal environmental changes.
Collapse
|
7
|
de Jonge EF, Tommassen J. Conditional growth defect of Bordetella pertussis and Bordetella bronchiseptica ferric uptake regulator (fur) mutants. FEMS Microbiol Lett 2022; 369:6608281. [PMID: 35700015 PMCID: PMC9249403 DOI: 10.1093/femsle/fnac047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/04/2022] [Accepted: 06/09/2022] [Indexed: 11/29/2022] Open
Abstract
Outer-membrane vesicles (OMVs) are promising tools in the development of novel vaccines against the respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica. Unfortunately, vesiculation by bordetellae is too low for cost-effective vaccine production. In other bacteria, iron limitation or inactivation of the fur gene has been shown to increase OMV production, presumably by downregulation of the mla genes, which encode machinery for maintenance of lipid asymmetry in the outer membrane. Here, we followed a similar approach in bordetellae. Whereas a fur mutant was readily obtained in B. bronchiseptica, a B. pertussis fur mutant could only be obtained in iron-deplete conditions, indicating that a fur mutation is conditionally lethal in this bacterium. The fur mutants displayed a growth defect in iron-replete media, presumably because constitutive expression of iron-uptake systems resulted in iron intoxication. Accordingly, expression of the Escherichia coli ferritin FtnA to sequester intracellularly accumulated iron rescued the growth of the mutants in these media. The fur mutations led to the constitutive expression of novel vaccine candidates, such as the TonB-dependent receptors FauA for the siderophore alcaligin and BhuR for heme. However, neither inactivation of fur nor growth under iron limitation improved vesiculation, presumably because the expression of the mla genes appeared unaffected.
Collapse
Affiliation(s)
- Eline F de Jonge
- Section Molecular Microbiology, Department of Biology, Faculty of Science and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jan Tommassen
- Section Molecular Microbiology, Department of Biology, Faculty of Science and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
8
|
Do AD, Chang CC, Su CH, Hsu YM. Lactobacillus rhamnosus JB3 inhibits Helicobacter pylori infection through multiple molecular actions. Helicobacter 2021; 26:e12806. [PMID: 33843101 DOI: 10.1111/hel.12806] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Eradication of Helicobacter pylori infection is the most direct and effective way for preventing gastric cancer. Lactic acid bacteria are considered as alternative therapeutic agents against H. pylori infection. METHODS Effects of Lactobacillus rhamnosus JB3 (LR-JB3) on the virulence gene expression of H. pylori and infection-induced cellular responses of AGS cells were investigated by co-cultivating infected AGS cells with different multiplicity of infections (MOIs) of LR-JB3. RESULTS LR-JB3, specifically at a MOI of 25, suppressed the association ability of H. pylori and its induced IL-8 levels, as well as the mRNA levels of vacA, sabA, and fucT of H. pylori, infection-induced Lewis (Le)x antigen and Toll-like receptor 4 (TLR4) expressions in AGS cells. However, the apoptosis mediated by infection was inhibited by LR-JB3 in a dose-dependent manner. In addition, autoinducer (AI)-2 was observed to have increased the association ability and fucT expression of H. pylori, and Lex antigen and TLR4 expression of AGS cells. Interestingly, an unknown bioactive cue was hypothesized to have been secreted from LR-JB3 at a MOI of 25 to act as an antagonist of AI-2. CONCLUSIONS LR-JB3 possesses various means to interfere with H. pylori pathogenesis and infection-induced cellular responses of AGS cells to fight against infection.
Collapse
Affiliation(s)
- Anh Duy Do
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chun-Chi Chang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chiu-Hsian Su
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Crowley E, Hussey S. Helicobacter pylori in Childhood. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2021:275-292.e12. [DOI: 10.1016/b978-0-323-67293-1.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Ferric Uptake Regulator Fur Coordinates Siderophore Production and Defense against Iron Toxicity and Oxidative Stress and Contributes to Virulence in Chromobacterium violaceum. Appl Environ Microbiol 2020; 86:AEM.01620-20. [PMID: 32859594 DOI: 10.1128/aem.01620-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022] Open
Abstract
Iron is a highly reactive metal that participates in several processes in prokaryotic and eukaryotic cells. Hosts and pathogens compete for iron in the context of infection. Chromobacterium violaceum, an environmental Gram-negative bacterial pathogen, relies on siderophores to overcome iron limitation in the host. In this work, we studied the role of the ferric uptake regulator Fur in the physiology and virulence of C. violaceum A Δfur mutant strain showed decreased growth and fitness under regular in vitro growth conditions and presented high sensitivity to iron and oxidative stresses. Furthermore, the absence of fur caused derepression of siderophore production and reduction in swimming motility and biofilm formation. Consistent with these results, the C. violaceum Δfur mutant was highly attenuated for virulence and liver colonization in mice. In contrast, a manganese-selected spontaneous fur mutant showed only siderophore overproduction and sensitivity to oxidative stress, indicating that Fur remained partially functional in this strain. We found that mutations in genes related to siderophore biosynthesis and a putative CRISPR-Cas locus rescued the Δfur mutant growth defects, indicating that multiple Fur-regulated processes contribute to maintaining bacterial cell fitness. Overall, our data indicated that Fur is conditionally essential in C. violaceum mainly by protecting cells from iron overload and oxidative damage. The requirement of Fur for virulence highlights the importance of iron in the pathogenesis of C. violaceum IMPORTANCE Maintenance of iron homeostasis, i.e., avoiding both deficiency and toxicity of this metal, is vital to bacteria and their hosts. Iron sequestration by host proteins is a crucial strategy to combat bacterial infections. In bacteria, the ferric uptake regulator Fur coordinates the expression of several iron-related genes. Sometimes, Fur can also regulate several other processes. In this work, we performed an in-depth phenotypic characterization of fur mutants in the human opportunistic pathogen Chromobacterium violaceum We determined that fur is a conditionally essential gene necessary for proper growth under regular conditions and is fully required for survival under iron and oxidative stresses. Fur also controlled several virulence-associated traits, such as swimming motility, biofilm formation, and siderophore production. Consistent with these results, a C. violaceum fur null mutant showed attenuation of virulence. Therefore, our data established Fur as a major player required for C. violaceum to manage iron, including during infection in the host.
Collapse
|
11
|
Zhang F, Li B, Dong H, Chen M, Yao S, Li J, Zhang H, Liu X, Wang H, Song N, Zhang K, Du N, Xu S, Gu L. YdiV regulates Escherichia coli ferric uptake by manipulating the DNA-binding ability of Fur in a SlyD-dependent manner. Nucleic Acids Res 2020; 48:9571-9588. [PMID: 32813023 PMCID: PMC7515728 DOI: 10.1093/nar/gkaa696] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Iron is essential for all bacteria. In most bacteria, intracellular iron homeostasis is tightly regulated by the ferric uptake regulator Fur. However, how Fur activates the iron-uptake system during iron deficiency is not fully elucidated. In this study, we found that YdiV, the flagella gene inhibitor, is involved in iron homeostasis in Escherichia coli. Iron deficiency triggers overexpression of YdiV. High levels of YdiV then transforms Fur into a novel form which does not bind DNA in a peptidyl-prolyl cis-trans isomerase SlyD dependent manner. Thus, the cooperation of YdiV, SlyD and Fur activates the gene expression of iron-uptake systems under conditions of iron deficiency. Bacterial invasion assays also demonstrated that both ydiV and slyD are necessary for the survival and growth of uropathogenic E. coli in bladder epithelial cells. This reveals a mechanism where YdiV not only represses flagella expression to make E. coli invisible to the host immune system, but it also promotes iron acquisition to help E. coli overcome host nutritional immunity.
Collapse
Affiliation(s)
- Fengyu Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Bingqing Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, P.R. China
| | - Hongjie Dong
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Min Chen
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Shun Yao
- School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Jingwen Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266237, P.R. China
| | - Honghai Zhang
- Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Shandong University, 44 Wenhuaxi Road, Jinan 250012, P. R. China
| | - Xiangguo Liu
- School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Hongwei Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Nannan Song
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Jinan 250062, P.R. China
| | - Kundi Zhang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Ning Du
- School of Life Sciences, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Sujuan Xu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, P.R. China
| |
Collapse
|
12
|
Banerji R, Kanojiya P, Saroj SD. Role of interspecies bacterial communication in the virulence of pathogenic bacteria. Crit Rev Microbiol 2020; 46:136-146. [DOI: 10.1080/1040841x.2020.1735991] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D. Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
13
|
Fagoonee S, Pellicano R. Helicobacter pylori: molecular basis for colonization and survival in gastric environment and resistance to antibiotics. A short review. Infect Dis (Lond) 2019; 51:399-408. [PMID: 30907202 DOI: 10.1080/23744235.2019.1588472] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/11/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori is a human-specific pathogen with a strict tropism for the gastric mucosa. This bacterium infects around half of the world population and is the main responsible for gastritis, peptic ulcer and, in some cases, for the pathogenesis of gastric cancer. Nevertheless, disease development in infected subjects depends not only on the bacterium, but also on the host genetic predisposition and on environmental factors. The fascinating question of how the bacterium can survive in the gastric environment has stimulated research in this field. It is now clear that H. pylori is able to colonize and adhere to the gastric epithelium through several mechanisms, including the breakdown of urea with production of the cell-toxic ammonia. The resulting raise in pH neutralizes acidity of the stomach, thereby allowing the bacterium to safely cross the mucus layer to the epithelial surface. Current challenges regard understanding the mechanisms of antibiotic resistance and how to overcome it. Lately, an increasing H. pylori resistance rate to antibiotics has been reported and several molecular bases for this phenomenon described. In this review, we highlight the current knowledge on mechanisms supporting H. pylori resistance to gastric environment and to therapy.
Collapse
Affiliation(s)
- Sharmila Fagoonee
- a Institute for Biostructure and Bioimaging (CNR) c/o Molecular Biotechnology Center , Turin , Italy
| | - Rinaldo Pellicano
- b Unit of Gastroenterology , Molinette-SGAS Hospital , Turin , Italy
| |
Collapse
|
14
|
Isaeva G, Valieva R. Biological characteristics and virulence of Helicobacter pylori. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2018. [DOI: 10.36488/cmac.2018.1.14-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
This review summarizes the most recent data on the biological characteristics of Helicobacter pylori (morphological, cultural, biochemical). H. pylori pathogenicity factors promoting colonization, adhesion, biofilm formation, aggression, and cytotoxicity, their contribution to the pathogenesis of diseases as well as the possible relationships with various clinical outcomes are described in detail. The genetic heterogeneity of H. pylori strains which can determine different clinical manifestations and have significance for conducting epidemiological studies is also considered.
Collapse
Affiliation(s)
- G.Sh. Isaeva
- Kazan Research Institute of Epidemiology and Microbiology; Kazan State Medical University (Kazan, Russia)
| | - R.I. Valieva
- Kazan Research Institute of Epidemiology and Microbiology; KazanState Medical University (Kazan, Russia)
| |
Collapse
|
15
|
Abstract
Helicobacter pylori is responsible for the most commonly found infection in the world's population. It is the major risk factor for gastric cancer development. Numerous studies published over the last year provide new insights into the strategies employed by H. pylori to adapt to the extreme acidic conditions of the gastric environment, to establish persistent infection and to deregulate host functions, leading to gastric pathogenesis and cancer. In this review, we report recent data on the mechanisms involved in chemotaxis, on the essential role of nickel in acid resistance and gastric colonization, on the importance of adhesins and Hop proteins and on the role of CagPAI-components and CagA. Among the host functions, a special focus has been made on the escape from immune response, the ability of bacteria to induce genetic instability and modulate telomeres, the mechanism of autophagy and the deregulation of micro RNAs.
Collapse
Affiliation(s)
- Vania Camilo
- Pasteur Institute, Department of Microbiology, Helicobacter Pathogenesis Unit, Paris Cedex 15, France.,INSERM U1173, Faculty of Health Sciences Simone Veil, Université Versailles-Saint-Quentin, Saint Quentin en Yvelines, France
| | - Toshiro Sugiyama
- Graduate School of Medicine and Pharmaceutical Sciences, Department of Gastroenterology, University of Toyama, Sugitani, Toyama, Japan
| | - Eliette Touati
- Pasteur Institute, Department of Microbiology, Helicobacter Pathogenesis Unit, Paris Cedex 15, France
| |
Collapse
|