1
|
Heidary M, Akrami S, Madanipour T, Shakib NH, Mahdizade Ari M, Beig M, Khoshnood S, Ghanavati R, Bazdar M. Effect of Helicobacter pylori-induced gastric cancer on gastrointestinal microbiota: a narrative review. Front Oncol 2025; 14:1495596. [PMID: 39868371 PMCID: PMC11757270 DOI: 10.3389/fonc.2024.1495596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Helicobacter pylori (H. pylori) infection is a typical microbial agent that interferes with the complex mechanisms of gastric homeostasis by disrupting the balance between the host gastric microbiota and mucosa-related factors, ultimately leading to inflammatory changes, dysbiosis, and gastric cancer (GC). We searched this field on the basis of PubMed, Google Scholar, Web of Science, and Scopus databases. Most studies show that H. pylori inhibits the colonization of other bacteria, resulting in a less variety of bacteria in the gastrointestinal (GI) tract. When comparing the patients with H. pylori-positive and H. pylori-negative GC, the composition of the gastric microbiome changes with increasing abundance of H. pylori (where present) in the gastritis stage, whereas, as the gastric carcinogenesis cascade progresses to GC, oral and intestinal-type pathogenic microbial strains predominate. H. pylori infection induces a premalignant milieu of atrophy and intestinal metaplasia, and the resulting change in gastric microbiota appears to play an important role in gastric carcinogenesis. The effect of H. pylori-induced GC on GI microbiota is discussed in this review.
Collapse
Affiliation(s)
- Mohsen Heidary
- Leishmaniasis Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sousan Akrami
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tohid Madanipour
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nafiseh Hosseinzadeh Shakib
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Roya Ghanavati
- School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Monireh Bazdar
- School of Medicine, Razi Hospital, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
2
|
Gudra D, Silamikelis I, Pjalkovskis J, Danenberga I, Pupola D, Skenders G, Ustinova M, Megnis K, Leja M, Vangravs R, Fridmanis D. Abundance and prevalence of ESBL coding genes in patients undergoing first line eradication therapy for Helicobacter pylori. PLoS One 2023; 18:e0289879. [PMID: 37561723 PMCID: PMC10414638 DOI: 10.1371/journal.pone.0289879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
The spread of extended-spectrum beta-lactamases (ESBLs) in nosocomial and community-acquired enterobacteria is an important challenge for clinicians due to the limited therapeutic options for infections that are caused by these organisms. Here, we developed a panel of ESBL coding genes, evaluated the abundance and prevalence of ESBL encoding genes in patients undergoing H. pylori eradication therapy, and summarized the effects of eradication therapy on functional profiles of the gut microbiome. To assess the repertoire of known beta lactamase (BL) genes, they were divided into clusters according to their evolutionary relation. Primers were designed for amplification of cluster marker regions, and the efficiency of this amplification panel was assessed in 120 fecal samples acquired from 60 patients undergoing H. pylori eradication therapy. In addition, fecal samples from an additional 30 patients were used to validate the detection efficiency of the developed ESBL panel. The presence for majority of targeted clusters was confirmed by NGS of amplification products. Metagenomic sequencing revealed that the abundance of ESBL genes within the pool of microorganisms was very low. The global relative abundances of the ESBL-coding gene clusters did not differ significantly among treatment states. However, at the level of each cluster, classical ESBL producers such as Klebsiella sp. for blaOXY (p = 0.0076), Acinetobacter sp. for blaADC (p = 0.02297) and others, differed significantly with a tendency to decrease compared to the pre- and post-eradication states. Only 13 clusters were common across all three datasets, suggesting a patient-specific distribution profile of ESBL-coding genes. The number of AMR genes detected in the post-eradication state was higher than that in the pre-eradication state, which could be attributed, at least in part, to the therapy. This study demonstrated that the ESBL screening panel was effective in targeting ESBL-coding gene clusters from bacterial DNA and that minor differences exist in the abundance and prevalence of ESBL-coding gene levels before and after eradication therapy.
Collapse
Affiliation(s)
- Dita Gudra
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | - Darta Pupola
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Girts Skenders
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Maija Ustinova
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Reinis Vangravs
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | | |
Collapse
|
4
|
Iino C, Shimoyama T. Impact of Helicobacter pylori infection on gut microbiota. World J Gastroenterol 2021; 27:6224-6230. [PMID: 34712028 PMCID: PMC8515792 DOI: 10.3748/wjg.v27.i37.6224] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/13/2021] [Accepted: 09/02/2021] [Indexed: 02/06/2023] Open
Abstract
A number of studies have revealed the association between Helicobacter pylori (H. pylori) infection and the gut microbiota. More than half of the investigations on the impact of H. pylori on the gut microbiota have been the sub-analyses of the influence of eradication therapy. It was observed that H. pylori eradication altered gut microbiota within a short period after eradication, and majority of the alterations took a long period of time to reverse back to the original. Changes in the gut microbiota within a short period after eradication may be attributed to antibiotics and proton pump inhibitors. Modification of gastric acidity in the stomach caused by a long-term H. pylori infection alters the gut microbiota. Analysis of the gut microbiota should be conducted in a large population, adjusting for considerable biases associated with the composition of the gut microbiota, such as age, sex, body mass index, diet and the virulence of H. pylori.
Collapse
Affiliation(s)
- Chikara Iino
- Department of Gastroenterology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Tadashi Shimoyama
- Department of Gastroenterology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
- Department of Internal Medicine, Aomori General Health Examination Center, Aomori 030-0962, Japan
| |
Collapse
|
5
|
Liang T, Liu F, Liu L, Zhang Z, Dong W, Bai S, Ma L, Kang L. Effects of Helicobacter pylori Infection on the Oral Microbiota of Reflux Esophagitis Patients. Front Cell Infect Microbiol 2021; 11:732613. [PMID: 34604113 PMCID: PMC8482873 DOI: 10.3389/fcimb.2021.732613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
The human oral microbiota plays a vital role in maintaining metabolic homeostasis. To explore the relationship between Helicobacter pylori (Hp) and reflux esophagitis, we collected 86 saliva samples from reflux esophagitis patients (RE group) and 106 saliva samples from healthy people (C group) for a high-throughput sequencing comparison. No difference in alpha diversity was detected between the RE and the C groups, but beta diversity of the RE group was higher than the C group. Bacteroidetes was more abundant in the RE group, whereas Firmicutes was more abundant in the C group. The linear discriminant analysis effect size analysis demonstrated that the biomarkers of the RE group were Prevotella, Veillonella, Leptotrichia, and Actinomyces, and the biomarkers of the C group were Lautropia, Gemella, Rothia, and Streptococcus. The oral microbial network structure of the C group was more complex than that of the RE group. Second, to explore the effect of Hp on the oral microbiota of RE patients, we performed the 14C-urea breath test on 45 of the 86 RE patients. We compared the oral microbiota of 33 Hp-infected reflux esophagitis patients (REHpp group) and 12 non-Hp-infected reflux esophagitis patients (REHpn group). No difference in alpha diversity was observed between the REHpn and REHpp groups, and beta diversity of the REHpp group was significantly lower than that of the REHpn group. The biomarkers in the REHpp group were Veillonella, Haemophilus, Selenomonas, Megasphaera, Oribacterium, Butyrivibrio, and Campylobacter; and the biomarker in the REHpn group was Stomatobaculum. Megasphaera was positively correlated with Veillonella in the microbial network of the REHpp group. The main finding of this study is that RE disturbs the human oral microbiota, such as increased beta diversity. Hp infection may inhibit this disorderly trend.
Collapse
Affiliation(s)
- Tian Liang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Fang Liu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Lijun Liu
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Zhiying Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Wenxue Dong
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Su Bai
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Lifeng Ma
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| | - Longli Kang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China.,Key Laboratory of High Altitude Environment and Genes Related to Diseases of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, China
| |
Collapse
|
6
|
Serrano C, Harris PR, Smith PD, Bimczok D. Interactions between H. pylori and the Gastric Microbiome: Impact on Gastric Homeostasis and Disease. CURRENT OPINION IN PHYSIOLOGY 2021; 21:57-64. [PMID: 34113748 PMCID: PMC8186273 DOI: 10.1016/j.cophys.2021.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Like many seemingly inhospitable environments on our planet, the highly acidic human stomach harbors a diverse bacterial microflora. The best-known member of the human gastric flora, Helicobacter pylori, causes a number of gastric diseases, including peptic ulcer disease and gastric adenocarcinoma. In the absence of Helicobacter pylori infection, the gastric microbiota displays some features similar to the oral cavity with Firmicutes the most common phylum, followed by Proteobacteria and Bacteroidetes. When present, H. pylori dominates the gastric microbiome and reduces diversity and composition of other taxa. The composition of the gastric microbiome also is altered in the setting of proton pump inhibitor therapy and gastric neoplasia. This review summarizes foundational and recent studies that have investigated the composition of the human gastric microbiome in a variety of patient groups, with a focus on potential mechanisms involved in regulation of gastric microbial community structure.
Collapse
Affiliation(s)
- Carolina Serrano
- Department of Pediatric Gastroenterology and Nutrition, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paul R. Harris
- Department of Pediatric Gastroenterology and Nutrition, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Phillip D. Smith
- Department of Medicine, Division of Gastroenterology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717
| |
Collapse
|