1
|
Fernandes IG, Oliveira LDM, Andrade MMDS, Alberca RW, Lima JC, de Sousa ESA, Pietrobon AJ, Pereira NZ, Castelo Branco ACC, Duarte AJDS, Sato MN. Resveratrol Upregulates Antioxidant Factors Expression and Downmodulates Interferon-Inducible Antiviral Factors in Aging. Int J Mol Sci 2025; 26:2345. [PMID: 40076963 PMCID: PMC11900160 DOI: 10.3390/ijms26052345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Immunosenescence, a process with a dysfunctional immune response that may favor infection is associated with an increase in inflammatory responses mediated by proinflammatory cytokines, characteristic of inflammaging. Aging and immunosenescence have a relationship relating to oxidative stress and inflammaging. Therefore, natural antioxidant compounds could be candidates for the control of the oxidative process. Our purpose was to evaluate the effect of resveratrol (Resv) on the antioxidant, antiviral, and anti-inflammatory responses induced by toll-like receptors (TLRs) 3, 4, and 7/8 agonists stimulation on peripheral blood mononuclear cells (PBMCs) of elderly and healthy female individuals (63-82 years old) and young and healthy female individuals (21-31 years old). Our data show that Resv may upregulate antioxidant factor expression, such as catalase (CAT) and SIRT1, in response to TLR4 and TLR7/8 agonists, similarly in both young and aged groups. Moreover, the Resv anti-inflammatory effect was detected by inhibiting IL-1β, TNF-α, and IL-10 secretion levels, as well as by the chemokines CCL2 and CCL5, induced by TLR4 and TLR7/8 stimulation. Curiously, Resv decreased antiviral genes, such as MxA, STING, and IRF7 expression, possibly by reducing the inflammatory effects of interferon-induced genes. Taken together, our results demonstrate the ability of Resv to stimulate antioxidant factors, leading to a downmodulation of the inflammatory response induced by innate immune stimulation. These findings point out Resv as a strategy to control the upregulation of inflammatory response, even in elderly individuals.
Collapse
Affiliation(s)
- Iara Grigoletto Fernandes
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Tropical Medicine Institute of Sao Paulo, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil (M.N.S.)
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies, LIM-56, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Luana de M. Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Tropical Medicine Institute of Sao Paulo, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil (M.N.S.)
- Department of Immunology, Institute of Biomedical Sciences, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Milena M. de Souza Andrade
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Tropical Medicine Institute of Sao Paulo, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil (M.N.S.)
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies, LIM-56, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Ricardo W. Alberca
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Tropical Medicine Institute of Sao Paulo, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil (M.N.S.)
| | - Júlia Cataldo Lima
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Tropical Medicine Institute of Sao Paulo, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil (M.N.S.)
| | - Emanuella Sarmento Alho de Sousa
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Tropical Medicine Institute of Sao Paulo, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil (M.N.S.)
- Department of Immunology, Institute of Biomedical Sciences, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Anna Julia Pietrobon
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Tropical Medicine Institute of Sao Paulo, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil (M.N.S.)
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies, LIM-56, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Nátalli Zanete Pereira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Tropical Medicine Institute of Sao Paulo, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil (M.N.S.)
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies, LIM-56, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Anna Cláudia Calvielli Castelo Branco
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Tropical Medicine Institute of Sao Paulo, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil (M.N.S.)
- Department of Immunology, Institute of Biomedical Sciences, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Alberto José da Silva Duarte
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Tropical Medicine Institute of Sao Paulo, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil (M.N.S.)
| | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Tropical Medicine Institute of Sao Paulo, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil (M.N.S.)
- Department of Dermatology, Laboratory of Dermatology and Immunodeficiencies, LIM-56, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
2
|
Zhang Z, Liu J, Wang Y, Zhang L, Zhou T, Huang Y, Zhu T. Toll-like Receptor 4 Signaling Mediates Gastritis and Gastric Cancer. Curr Mol Med 2025; 25:388-398. [PMID: 38204278 DOI: 10.2174/0115665240276139231206071742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/02/2023] [Accepted: 10/25/2023] [Indexed: 01/12/2024]
Abstract
The stomach is a crucial digestive organ in the human body, highly susceptible to inflammation or pathogen invasion, which can lead to various gastric diseases, including gastric cancer. Toll-like receptors (TLRs) are the first line of defense against pathogen invasion. TLR4, a member of the TLRs family, recognizes pathogen and danger-related molecular patterns to induce inflammatory responses. Helicobacter pylori (H. pylori) is a significant factor in gastric health, and TLR4 recognizes H. pylori -LPS to trigger an inflammatory response. Downstream TLR4 signaling generates proinflammatory cytokines that initiate inflammation in the gastric mucosa. In addition, TLR4 gene polymorphisms can increase health risks. This study aims to investigate the contribution of TLR4 to the inflammatory response in gastric diseases and the relation between TLR4 and H. pylori, TLR4 gene polymorphisms, and how TLR4 affects gastric diseases' possible pathways to provide further insight for future prevention and clinical treatment strategies.
Collapse
Affiliation(s)
- Zepeng Zhang
- Department of pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Ju Liu
- Department of pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Yi Wang
- Department of pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Lei Zhang
- Department of pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Tong Zhou
- Department of pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Yu Huang
- Department of pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Tongtong Zhu
- Department of pharmacy, Kunshan Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| |
Collapse
|
3
|
Zhao SQ, Zheng HL, Zhong XT, Wang ZY, Su Y, Shi YY. Effects and mechanisms of Helicobacter pylori infection on the occurrence of extra-gastric tumors. World J Gastroenterol 2024; 30:4090-4103. [DOI: 10.3748/wjg.v30.i37.4090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/23/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Helicobacter pylori (H. pylori) colonizes the human stomach and many studies have discussed the mechanisms of H. pylori infection leading to gastric diseases, including gastric cancer. Additionally, increasing data have shown that the infection of H. pylori may contribute to the development of extra-gastric diseases and tumors. Inflammation, systemic immune responses, microbiome disorders, and hypergastrinemia caused by H. pylori infection are associated with many extra-gastric malignancies. This review highlights recent discoveries; discusses the relationship between H. pylori and various extra-gastric tumors, such as colorectal cancer, lung cancer, cholangiocarcinoma, and gallbladder carcinoma; and explores the mechanisms of extra-gastric carcinogenesis by H. pylori. Overall, these findings refine our understanding of the pathogenic processes of H. pylori, provide guidance for the clinical treatment and management of H. pylori-related extra-gastric tumors, and help improve prognosis.
Collapse
Affiliation(s)
- Shi-Qing Zhao
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
- Health Science Center, Peking University, Beijing 100191, China
| | - Hui-Ling Zheng
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China
| | - Xiao-Tian Zhong
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
- Health Science Center, Peking University, Beijing 100191, China
| | - Zi-Ye Wang
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
- Health Science Center, Peking University, Beijing 100191, China
| | - Yi Su
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
- Health Science Center, Peking University, Beijing 100191, China
| | - Yan-Yan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
4
|
He Y, Zhang X, Zhang X, Fu B, Xing J, Fu R, Lv J, Guo M, Huo X, Liu X, Lu J, Cao L, Du X, Ge Z, Chen Z, Lu X, Li C. Hypoxia exacerbates the malignant transformation of gastric epithelial cells induced by long-term H. pylori infection. Microbiol Spectr 2024; 12:e0031124. [PMID: 38916312 PMCID: PMC11302036 DOI: 10.1128/spectrum.00311-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/14/2024] [Indexed: 06/26/2024] Open
Abstract
Helicobacter pylori is a microaerophilic Gram-negative bacterium that resides in the human stomach and is classified as a class I carcinogen for gastric cancer. Numerous studies have demonstrated that H. pylori infection plays a role in regulating the function of host cells, thereby contributing to the malignant transformation of these cells. However, H. pylori infection is a chronic process, and short-term cellular experiments may not provide a comprehensive understanding of the in vivo situation, especially when considering the lower oxygen levels in the human stomach. In this study, we aimed to investigate the mechanisms underlying gastric cell dysfunction after prolonged exposure to H. pylori under hypoxic conditions. We conducted a co-culture experiment using the gastric cell line GES-1 and H. pylori for 30 generations under intermittent hypoxic conditions. By closely monitoring cell proliferation, migration, invasion, autophagy, and apoptosis, we revealed that sustained H. pylori stimulation under hypoxic conditions significantly influences the function of GES-1 cells. This stimulation induces epithelial-mesenchymal transition and contributes to the propensity for malignant transformation of gastric cells. To confirm the in vitro results, we conducted an experiment involving Mongolian gerbils infected with H. pylori for 85 weeks. All the results strongly suggest that the Nod1 receptor signaling pathway plays a crucial role in H. pylori-related apoptosis and autophagy. In summary, continuous stimulation by H. pylori affects the functioning of gastric cells through the Nod1 receptor signaling pathway, increasing the likelihood of cell carcinogenesis. The presence of hypoxic conditions further exacerbates this process.IMPORTANCEDeciphering the collaborative effects of Helicobacter pylori infection on gastric epithelial cell function is key to unraveling the development mechanisms of gastric cancer. Prior research has solely examined the outcomes of short-term H. pylori stimulation on gastric epithelial cells under aerobic conditions, neglecting the bacterium's nature as a microaerophilic organism that leads to cancer following prolonged stomach colonization. This study mimics a more genuine in vivo infection scenario by repeatedly exposing gastric epithelial cells to H. pylori under hypoxic conditions for up to 30 generations. The results show that chronic exposure to H. pylori in hypoxia substantially increases cell migration, invasion, and epithelial-mesenchymal transition, while suppressing autophagy and apoptosis. This highlights the significance of hypoxic conditions in intensifying the carcinogenic impact of H. pylori infection. By accurately replicating the in vivo gastric environment, this study enhances our comprehension of H. pylori's pathogenic mechanisms in gastric cancer.
Collapse
Affiliation(s)
- Yang He
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- School of Nursing, Dalian Medical University, Dalian, China
| | - Xiulin Zhang
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaolu Zhang
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Bo Fu
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jin Xing
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Rui Fu
- Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Jianyi Lv
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Meng Guo
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xueyun Huo
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xin Liu
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Jing Lu
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Lixue Cao
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xiaoyan Du
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Zhenwen Chen
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Xuancheng Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Changlong Li
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Department of Medical Genetics and Developmental Biology, School of Basic Medical Science, Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Cao L, Ba Y, Chen F, Zhang S, Zhang H. Exploration of bacterial lipopolysaccharide-related genes signature based on T cells for predicting prognosis in colorectal cancer. Aging (Albany NY) 2024; 16:11606-11625. [PMID: 39115879 PMCID: PMC11346792 DOI: 10.18632/aging.206041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE The intratumoral microorganisms participates in the progression and immunotherapy of colorectal cancer (CRC). However, due to technical limitations, the impact of microorganisms on CRC has not been fully understood. Therefore, we conducted a systematic analysis of relationship between bacterial lipopolysaccharide (LPS)-associated genes and immune cells to explore new biomarkers for predicting the prognosis of CRC. METHODS The single-cell RNA sequencing data and the Comparative Toxicogenomics Database were used to screen T cells-associated LPS-related genes (TALRGs). Then, we established and validated the TALRGs risk signature in The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) cohort and GSE39582 cohort. Besides, we compared the differences in tumor-infiltrating immune cell types, immunotherapeutic response, somatic mutation profiles, and tumor mutation burden (TMB) between high-risk group and low-risk group. In addition, the immunotherapeutic cohort (Imvigor210) treated with an anti-PD-L1 agent was performed to explore the potential value of the TALRGs signature on immunotherapy. RESULTS Five prognostic TALRGs were identified and selected to build the prognostic model. The high-risk group had poor prognosis in both TCGA-COAD cohort (P < 0.0001) and GSE39582 cohort (P = 0.00019). The areas under the curves (AUCs) of TALRGs signature were calculated (TCGA-COAD cohort: 0.624 at 1 years, 0.639 at 3 years, 0.648 at 5 years; anti-PD-L1 cohort was 0.59). The high-risk group had advanced pathological stages and higher TMN stages in both TCGA-COAD cohort and GSE39582 cohort. The high-risk group had the higher infiltration of immunosuppressive cells, the expressions of immune checkpoint molecules, the IC50 values of chemotherapy drugs, and TP53 mutation rate (P < 0.05). In addition, patients with high TMB had worse prognosis (P < 0.05). Furthermore, the Imvigor210 also showed patients with high-risk scores had poor prognosis (platinum-treated cohort: P = 0.0032; non-platinum-treated cohort: P = 0.00017). CONCLUSIONS Microorganisms are closely related to the tumor microenvironment to influence the progression and immune response of CRC via stimulating T cells through LPS-related genes. The TALRGs signature contributed to predict the prognosis and immunotherapy of CRC, and became new therapeutic targets and biomarkers of CRC.
Collapse
Affiliation(s)
- Lichao Cao
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Ying Ba
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Fang Chen
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Shenrui Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Hezi Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
6
|
Zhang H, Bi X, Yan P, Wang C. Neutrophil extracellular trap related risk score exhibits crucial prognostic value in skin cutaneous melanoma, associating with distinct immune characteristics. Skin Res Technol 2024; 30:e70008. [PMID: 39167030 PMCID: PMC11337913 DOI: 10.1111/srt.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) are related to the prognosis of cancer patients. Nevertheless, the potential prognostic values of NETs in skin cutaneous melanoma (SKCM) remains largely unknown. MATERIALS AND METHODS The NET-related gene signature was constructed by LASSO Cox regression analysis using the TCGA-SKCM cohort. The overall survival (OS) and immune status in SKCM patients between the high- and low-NET score (high-score, low-score) groups were explored. The scRNA-seq dataset GSE115978 was used to understand the role of NET score in SKCM at single cell resolution. RESULTS A five NET genes-based signature (TLR2, CLEC6A, PDE4B, SLC22A4 and CYP4F3) was constructed as the NET-related prognostic model for SKCM. The OS of SKCM patients with low-score was better than that in patients with high-score. Additionally, NET score was negatively associated with infiltration of some immune cells (e.g. type I Macrophages, CD8-T cells, CD4-T cells). Moreover, patients with high-score had low stromal, immune and ESTIMATE scores. Furthermore, drug sensitivity analysis results showed that Lapatinib, Trametinib and Erlotinib may have better therapeutic advantages in patients with high-score. CONCLUSION We established a NET-related five gene signature in SKCM and found that the NET-related signature may exhibit a good predictive ability for SKCM prognosis. The NET score may not only predict the survival outcome and drug sensitivity in SKCM, but also reflect the immune conditions of SKCM patients.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Hand and Foot SurgeryZibo Central HospitalZiboChina
| | - Xiaoqing Bi
- Dermatology&S.T.D. DepartmentZibo Central HospitalZiboChina
| | - Pengrong Yan
- Dermatology&S.T.D. DepartmentZibo Central HospitalZiboChina
| | - Congcong Wang
- Dermatology&S.T.D. DepartmentZibo Central HospitalZiboChina
| |
Collapse
|
7
|
Zhang L, Yu F, Zhang Y, Li P. Implications of lncRNAs in Helicobacter pylori-associated gastrointestinal cancers: underlying mechanisms and future perspectives. Front Cell Infect Microbiol 2024; 14:1392129. [PMID: 39035354 PMCID: PMC11257847 DOI: 10.3389/fcimb.2024.1392129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a harmful bacterium that is difficult to conveniently diagnose and effectively eradicate. Chronic H. pylori infection increases the risk of gastrointestinal diseases, even cancers. Despite the known findings, more underlying mechanisms are to be deeply explored to facilitate the development of novel prevention and treatment strategies of H. pylori infection. Long noncoding RNAs (lncRNAs) are RNAs with more than 200 nucleotides. They may be implicated in cell proliferation, inflammation and many other signaling pathways of gastrointestinal cancer progression. The dynamic expression of lncRNAs indicates their potential to be diagnostic or prognostic biomarkers. In this paper, we comprehensively summarize the processes of H. pylori infection and the treatment methods, review the known findings of lncRNA classification and functional mechanisms, elucidate the roles of lncRNAs in H. pylori-related gastrointestinal cancer, and discuss the clinical perspectives of lncRNAs.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | | | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Shang Z, Fan Y, Xi S, Zhang S, Shen W, Tao L, Xu C, Tan J, Fan M, Ma H, Lai Y, Sun D, Cheng H. Arenobufagin enhances T-cell anti-tumor immunity in colorectal cancer by modulating HSP90β accessibility. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155497. [PMID: 38640855 DOI: 10.1016/j.phymed.2024.155497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a significant public health issue, ranking as one of the predominant cancer types globally in terms of incidence. Intriguingly, Arenobufagin (Are), a compound extracted from toad venom, has demonstrated the potential to inhibit tumor growth effectively. PURPOSE This study aimed to explore Are's molecular targets and unravel its antitumor mechanism in CRC. Specifically, we were interested in its impact on immune checkpoint modulation and correlations with HSP90β-STAT3-PD-L1 axis activity. METHODS We investigated the in vivo antitumor effects of Are by constructing a colorectalcancer subcutaneous xenograft mouse model. Subsequently, we employed single-cell multi-omics technology to study the potential mechanism by which Are inhibits CRC. Utilizing target-responsive accessibility profiling (TRAP) technology, we identified heatshock protein 90β (HSP90β) as the direct target of Are, and confirmed this through a microscale thermophoresis experiment (MST). Further downstream mechanisms were explored through techniques such as co-immunoprecipitation, Western blotting, qPCR, and immunofluorescence. Concurrently, we arrived at the same research conclusion at the organoid level by co-cultivating with immune cells. RESULTS We observed that Are inhibits PD-Ll expression in CRC tumor xenografts at low concentrations. Moreover, TRAP revealed that HSP90β's accessibility significantly decreased upon Are binding. We demonstrated a decrease in the activity of the HSP90β-STAT3-PD-Ll axis following low-concentration Are treatment in vivo. The PDO analysis showed improved enrichment of lymphocytes, particularly T cells, on the PDOs following Are treatment. CONCLUSION Contrary to previous research focusing on the direct cytotoxicity of Are towards tumor cells, our findings indicate that it can also inhibit tumor growth at lower concentrations through the modulation of immune checkpoints. This study unveils a novel anti-tumor mechanism of Are and stimulates contemplation on the dose-response relationship of natural products, which is beneficial for the clinical translational application of Are.
Collapse
Affiliation(s)
- Zhihao Shang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Yiping Fan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing 314000, China
| | - Songyang Xi
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang, 212000, China
| | - Shang Zhang
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Weixing Shen
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Lihuiping Tao
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Changliang Xu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Jiani Tan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Minmin Fan
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Hongyue Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Yueyang Lai
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | - Dongdong Sun
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | - Haibo Cheng
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, 210046, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| |
Collapse
|
9
|
Yang S, Hao S, Ye H, Zhang X. Cross-talk between Helicobacter pylori and gastric cancer: a scientometric analysis. Front Cell Infect Microbiol 2024; 14:1353094. [PMID: 38357448 PMCID: PMC10864449 DOI: 10.3389/fcimb.2024.1353094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/17/2024] [Indexed: 02/16/2024] Open
Abstract
Background Helicobacter pylori (HP) is considered a leading risk factor for gastric cancer (GC). The aim of this article is to conduct bibliometric and visual analysis to assess scientific output, identify highly cited papers, summarize current knowledge, and explore recent hotspots and trends in HP/GC research. Methods A bibliographic search was conducted on October 24, 2023, to retrieve relevant studies on HP/GC research between 2003 and 2022. The search terms were attached to HP and GC. The main data were from the Web of Science Core Collection (WoSCC). Data visualization was performed using Biblioshiny, VOSviewer, and Microsoft Excel. Results In HP/GC research, 1970 papers were retrieved. The total number of papers (Np) in HP/GC was growing from 2003 to 2022. China and Japan were in the leading position and made the most contributions to HP/GC. Vanderbilt University and the US Department of Veterans Affairs had the highest Np. The most productive authors were Peek Jr Richard M. and Piazuelo M Blanca. Helicobacter received the most Np, while Gastroenterology had the most total citations (TC). High-cited publications and keyword clustering were used to identify the current status and trends in HP/GC research, while historical citation analysis provided insight into the evolution of HP/GC research. The hot topics included the effect of HP on gastric tumorigenesis and progression, the pathogenesis of HP-induced GC (HP factors), and the mechanisms by which HP affects GC (host factors). Research in the coming years could focus on topics such as autophagy, gut microbiota, immunotherapy, exosomes, epithelial-mesenchymal transition (EMT), and gamma-glutamyl transpeptidase (GGT). Conclusion This study evaluated the global scientific output in HP/GC research and its quantitative characteristics, identified the essential works, and collected information on the current status, main focuses and emerging trends in HP/GC research to provide academics with guidance for future paths.
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
| | - Shaodong Hao
- Spleen-Stomach Department, Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Ye
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
| | - Xuezhi Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|