1
|
Huang J, Ali T, Feldman DM, Theise ND. Androgen-Induced, β-Catenin-Activated Hepatocellular Adenomatosis with Spontaneous External Rupture. Diagnostics (Basel) 2024; 14:1473. [PMID: 39061609 PMCID: PMC11276095 DOI: 10.3390/diagnostics14141473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Androgens have long been recognized as oncogenic agents. They can induce both benign and malignant hepatocellular neoplasms, including hepatocellular adenoma (HCA) and hepatocellular carcinoma, though the underlying mechanisms remain unclear. Androgen-induced liver tumors are most often solitary and clinically silent. Herein, we reported an androgen-induced HCA complicated by spontaneous rupture. The patient was a 24-year-old male presenting with fatigue, diminished libido, radiology-diagnosed hepatocellular adenomatosis for 3 years, and sudden-onset, severe, sharp, constant abdominal pain for one day. He used Aveed (testosterone undecanoate injection) from age 17 and completely stopped one year before his presentation. A physical exam showed touch pain and voluntary guarding in the right upper quadrant of the abdomen. An abdominal CT angiogram demonstrated multiple probable HCAs, with active hemorrhage of the largest one (6.6 × 6.2 × 5.1 cm) accompanied by large-volume hemoperitoneum. After being stabilized by a massive transfusion protocol and interventional embolization, he underwent a percutaneous liver core biopsy. The biopsy specimen displayed atypical hepatocytes forming dense cords and pseudoglands. The lesional cells diffusely stained β-catenin in nuclei and glutamine synthetase in cytoplasm. Compared to normal hepatocytes from control tissue, the tumor cells were positive for nuclear AR (androgen receptor) expression but had no increased EZH2 (Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit) protein expression. The case indicated that androgen-induced hepatocellular neoplasms should be included in the differential diagnosis of acute abdomen.
Collapse
Affiliation(s)
- Jialing Huang
- Department of Pathology, Geisinger Medical Center, Geisinger Commonwealth School of Medicine, 100 N. Academy Ave, Danville, PA 17822, USA
| | - Towhid Ali
- Department of Radiology, Geisinger Medical Center, Geisinger Commonwealth School of Medicine, 100 N. Academy Ave, Danville, PA 17822, USA
| | - David M. Feldman
- Department of Gastroenterology and Hepatology, New York University Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Neil D. Theise
- Department of Pathology, NYU Langone Medical Center, New York University Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| |
Collapse
|
2
|
Predictive Patterns of Glutamine Synthetase Immunohistochemical Staining in CTNNB1-mutated Hepatocellular Adenomas. Am J Surg Pathol 2021; 45:477-487. [PMID: 33560657 DOI: 10.1097/pas.0000000000001675] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Some hepatocellular adenoma (HCA) subtypes are characterized by different CTNNB1 mutations, leading to different beta-catenin activation levels, hence variable immunostaining patterns of glutamine synthetase (GS) expression, and different risks of malignant transformation. In a retrospective multicentric study of 63 resected inflammatory (n=33) and noninflammatory (n=30) molecularly confirmed CTNNB1-mutated b-(I)HCA, we investigated the predictive potential of 3 known GS patterns as markers for CTNNB1 exon 3, 7/8 mutations. Pattern 1 (diffuse homogenous) allowed recognition of 17/21 exon 3 non-S45 mutated b-(I)HCA. Pattern 2 (diffuse heterogenous) identified all b-(I)HCA harboring exon 3 S45 mutation (20/20). Pattern 3 (focal patchy) distinguished 12/22 b-(I)HCA with exon 7/8 mutations. In exon 3 S45 and 7/8 mutations, both b-HCA and b-IHCA showed a GS+/CD34- rim with diffuse CD34 positivity in the center of the lesion. Interobserver reproducibility was excellent for exon 3 mutations. Comparative analysis of GS patterns with molecular data showed 83% and 80% sensitivity (b-HCA/b-IHCA) and 100% specificity for exon 3 non-S45. For exon 3 S45, sensitivity was 100% for b-(I)HCA, and specificity 93% and 92% (b-HCA/b-IHCA). For exon 7/8, sensitivity was 55% for both subtypes and specificity 100% and 96% (b-HCA/b-IHCA). Preliminary data from 16 preoperative needle biopsies from the same patients suggest that this panel may also be applicable to small samples. In surgically resected HCA, 2 distinct GS patterns can reliably predict CTNNB1 exon 3 mutations, which are relevant because of the higher risk for malignant transformation. The third pattern, although specific, was less sensitive for the identification of exon 7/8 mutation, but the GS+/CD34- rim is a valuable aid to indicate either an exon 3 S45 or exon 7/8 mutation.
Collapse
|
3
|
Kim H, Park YN. Hepatocellular adenomas: recent updates. J Pathol Transl Med 2021; 55:171-180. [PMID: 33823565 PMCID: PMC8141970 DOI: 10.4132/jptm.2021.02.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/28/2021] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular adenoma (HCA) is a heterogeneous entity, from both the histomorphological and molecular aspects, and the resultant subclassification has brought a strong translational impact for both pathologists and clinicians. In this review, we provide an overview of the recent updates on HCA from the pathologists’ perspective and discuss several practical issues and pitfalls that may be useful for diagnostic practice.
Collapse
Affiliation(s)
- Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Young Nyun Park
- Department of Pathology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Putra J, Ferrell LD, Gouw ASH, Paradis V, Rishi A, Sempoux C, Balabaud C, Thung SN, Bioulac-Sage P. Malignant transformation of liver fatty acid binding protein-deficient hepatocellular adenomas: histopathologic spectrum of a rare phenomenon. Mod Pathol 2020; 33:665-675. [PMID: 31570768 DOI: 10.1038/s41379-019-0374-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 02/08/2023]
Abstract
The molecular classification of hepatocellular adenomas highlights a distinctive genotype-phenotype correlation. Malignant transformation is an exceptionally rare complication of hepatocyte nuclear factor 1α (HNF1A)-inactivated hepatocellular adenomas. This subtype is characterized by loss of liver fatty acid binding protein immunoexpression. In this study, we characterized the histopathologic spectrum of 13 liver fatty acid binding protein-deficient hepatocellular adenoma cases showing malignant transformation from multiple centers. Clinicopathologic characteristics of these patients were evaluated. Stains for reticulin, liver fatty acid binding protein, beta-catenin and glutamine synthetase were applied to these lesions. Moreover, the findings were compared to patients with β-catenin mutated hepatocellular adenoma. Liver fatty acid binding protein-deficient hepatocellular adenomas with borderline features/carcinoma were seen predominantly in females (77%) with an average age of 46 ± 18 years and multiple lesions (77%; five patients with adenomatosis). Meanwhile, β-catenin mutated hepatocellular adenoma patients with malignant transformation were predominantly male (67%, p = 0.018) with single lesion (86%, p = 0.0009). The largest liver fatty acid binding protein-deficient hepatocellular adenoma nodule in each patient ranged from 4 to 15.5 cm. Loss of liver fatty acid binding protein by immunohistochemistry was noted in all adenoma and borderline/carcinoma components. Features of malignant transformation were pseudoglandular architecture (85%), cytologic atypia (85%), architectural atypia (100%) and lack of steatosis (100%). Other findings included myxoid change (39%), peliosis (46%) and sinusoidal dilatation (46%). Molecular studies confirmed somatic inactivation of HNF1A in 3 cases and absence of TERT promotor and exon 3 CTNNB1 mutations in five cases. To summarize, liver fatty acid binding protein-deficient hepatocellular adenoma with malignant transformation is most frequently seen in female patients with multiple lesions. Most of these lesions demonstrate pseudoglandular architecture, cytologic and architectural atypia, with lack of steatosis. The natural history of these lesions is relatively benign with the exception of disease recurrence in 1 patient.
Collapse
Affiliation(s)
- Juan Putra
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Pathology, Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, ON, Canada.
| | - Linda D Ferrell
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Annette S H Gouw
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Arvind Rishi
- Department of Pathology, Long Island Jewish Medical Center, New Hyde Park, NY, USA
| | - Christine Sempoux
- Service of Clinical Pathology, Lausanne University Hospital, Institute of Pathology, Lausanne, Switzerland
| | - Charles Balabaud
- BaRITOn Bordeaux Research in Translational Oncology, Univ Bordeaux, INSERM UMR1053, F-33000, Bordeaux, France
| | - Swan N Thung
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paulette Bioulac-Sage
- BaRITOn Bordeaux Research in Translational Oncology, Univ Bordeaux, INSERM UMR1053, F-33000, Bordeaux, France
- Department of Pathology, CHU Bordeaux, F-33000, Bordeaux, France
| |
Collapse
|