1
|
Zhang XY, Wang L, Jiang Y, Huang SM, Zhu HR, Liu W, Wang JY, Wei XH, Zhao YL, Wei WJ, Fei T, Chen XH, Wang D, Li JL, Ling H, Zhuang M. Low CD4 count was characterized in recent HIV CRF01_AE infection and it rapidly increased to reach a peak in the first year since ART initiation. BMC Infect Dis 2025; 25:443. [PMID: 40165131 PMCID: PMC11956320 DOI: 10.1186/s12879-025-10799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 03/13/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Currently, most people living with HIV (PLWH) in China have a strong awareness of diagnosis and treatment in the early stage of HIV infection. Subtype-specific virological and immunological features of recently infected PLWH have not yet been elucidated. METHODS Data including CD4 count and viral load (VL) of 1508 anti-retroviral therapy (ART) -naïve PLWH were obtained from the HIV Database and comparatively analyzed among PLWH with different HIV subtypes. The infection status of 402 newly diagnosed and ART-naïve PLWH from a cohort of men who have sex with men (MSM) in China was evaluated using diagnosis records and LAg-Avidity EIA. Based on partial pol genes, HIV genotypes in 120 recent, 68 long-term, and 54 chronic infections were identified. The CD4 count, CD8 count, and VL, as well as trajectories of dynamic CD4 counts during ART of local PLWH with different HIV subtypes, were compared using non-parametric tests. RESULTS For the HIV database, the CD4 count in PLWH with CRF01_AE was lower than that in PLWH with CRF07_BC or subtype B. For the recently infected local PLWH, CRF01_AE was the dominant HIV subtype (65.83%), followed by CRF07_BC (18.33%) and subtype B (15.83%). Recent CRF01_AE infections showed a lower baseline CD4 count than CRF07_BC infections. During ART for recently infected PLWH, the CD4 count in the CRF01_AE group rapidly increased to reach a peak at the end of the first year post-ART, while the CD4 count in the CRF07_BC group increased slowly to reach a plateau at the end of the third year. The CD4 count in the subtype B group increased significantly to reach a plateau within the first two years and then its trajectory overlapped with that of the CRF07_BC group at the end of the third year post-ART. CONCLUSIONS CRF01_AE rapidly reduced CD4 count during the recent HIV infection. The CD4 count of the recently infected individuals with CRF01_AE increased sharply and reached its highest level of recovery within the first year of ART initiation. This study revealed an important time point for estimating CD4 count recovery post-ART in individuals with different HIV subtypes.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Li Wang
- Department of Infectious Diseases, Heilongjiang Provincial Hospital, Harbin, China
| | - Yue Jiang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Si-Miao Huang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Hong-Rui Zhu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wei Liu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Jia-Ye Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Xiang-Hui Wei
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yi-Lin Zhao
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wen-Juan Wei
- Center for AIDS/STD Treatment, Harbin Sixth Hospital, Harbin, China
| | - Teng Fei
- Clinical Laboratory, Heilongjiang Provincial Hospital, Harbin, China
| | - Xiao-Hong Chen
- Department of Infectious Diseases, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Wang
- AIDS Diagnosis and Treatment Center of Heilongjiang Province, Infectious Disease Hospital of Heilongjiang Province, Harbin, China
| | - Jin-Liang Li
- Center for AIDS/STD Treatment, Harbin Sixth Hospital, Harbin, China
| | - Hong Ling
- Department of Microbiology, Harbin Medical University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China.
- Key Laboratory of Pathogen Biology, Harbin, China.
| | - Min Zhuang
- Department of Microbiology, Harbin Medical University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin, China.
- Key Laboratory of Pathogen Biology, Harbin, China.
| |
Collapse
|
2
|
Yan H, Wu H, Li S, Wang J, Luo Y, Luo R, Gu Y, Cai Y, Tang S, Hao Y, Gu J, Han Z, Liu Y. The origin and spread of HIV-1 CRF59_01B epidemic in China: A molecular network and phylogeographic analysis. J Med Virol 2024; 96:e29799. [PMID: 39007425 DOI: 10.1002/jmv.29799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/05/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
Human immunodeficiency virus type 1 CRF59_01B, identified in China in 2013, has been detected nationwide, exhibiting notably high prevalence in Guangzhou and its vicinity. This study aimed to unravel its origin and migration. A data set was established, incorporating all available CRF59_01B pol gene sequences and their metadata from Guangzhou and the public database. Bayesian phylogeographic analysis demonstrated that CRF59_01B originated in Shenzhen, the neighboring city of Guangzhou, around 1998 with posterior probability of 0.937. Molecular network analysis detected 1131 transmission links and showed a remarkably high clustering rate (78.9%). Substantial inter-city transmissions (26.5%, 300/1131) were observed between Shenzhen and Guangzhou while inter-region transmissions linked Guangzhou with South (46) and Southwest (64) China. The centre of Guangzhou was the hub of CRF59_01B transmission, including the inflow from Shenzhen (3.57 events/year) and outflow to the outskirts of Guangzhou (>2 events/year). The large-scale analysis revealed significant migration from Shenzhen to Guangzhou (5.08 events/year) and North China (0.59 events/year), and spread from Guangzhou to Central (0.47 events/year), East (0.42 events/year), South (0.76 events/year), Southwest China (0.76 events/year) and Shenzhen (1.89 events/year). Shenzhen and Guangzhou served as the origin and the hub of CRF59_01B circulation, emphasizing inter-city cooperation and data sharing to confine its nationwide diffusion.
Collapse
Affiliation(s)
- Huanchang Yan
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hao Wu
- Department of AIDS Control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Shunming Li
- Department of AIDS Control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jiahang Wang
- School of Software, South China Normal University, Foshan, China
| | - Yefei Luo
- Department of AIDS Control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Rui Luo
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuzhou Gu
- Department of AIDS Control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yanshan Cai
- Department of AIDS Control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Shixing Tang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yuantao Hao
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Jing Gu
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhigang Han
- Department of AIDS Control and Prevention, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
- Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yu Liu
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Enhanced Transmissibility and Decreased Virulence of HIV-1 CRF07_BC May Explain Its Rapid Expansion in China. Microbiol Spectr 2022; 10:e0014622. [PMID: 35727067 PMCID: PMC9431131 DOI: 10.1128/spectrum.00146-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 CRF07_BC is one of the most common circulating recombinant forms (CRFs) in China and is becoming increasingly prevalent especially in HIV-infected men who have sex with men (MSM). The reason why this strain expanded so quickly in China remains to be defined. We previously observed that individuals infected with HIV-1 CRF07_BC showed slower disease progression than those infected with HIV-1 subtype B or CRF01_AE. CRF07_BC viruses carry two unique mutations in the p6Gag protein: insertion of PTAPPE sequences downstream of the original Tsg101 binding domain, and deletion of a seven-amino-acid sequence (30PIDKELY36) that partially overlaps with the Alix binding domain. In this study, we confirmed the enhanced transmission capability of CRF07_BC over HIV-1 subtype B or CRF01_AE by constructing HIV-1 transmission networks to quantitatively evaluate the growth rate of transmission clusters of different HIV-1 genotypes. We further determined lower virus infectivity and slower replication of CRF07_BC with aforementioned PTAPPE insertion (insPTAP) and/or PIDKELY deletion (Δ7) in the p6Gag protein, which in turn may increase the pool of people infected with CRF07_BC and the risk of HIV-1 transmission. These new features of CRF07_BC may explain its quick spread and will help adjust prevention strategy of HIV-1 epidemic. IMPORTANCE HIV-1 CRF07_BC is one of the most common circulating recombinant forms (CRFs) in China. The question is why and how CRF07_BC expanded so rapidly remains unknown. To address the question, we explored the transmission capability of CRF07_BC by constructing HIV-1 transmission networks to quantitatively evaluate the growth rate of transmission clusters of different HIV-1 genotypes. We further characterized the role of two unique mutations in CRF07_BC, PTAPPE insertion (insPTAP) and/or PIDKELY deletion (Δ7) in the p6Gag in virus replication. Our results help define the molecular mechanism regarding the association between the unique mutations and the slower disease progression of CRF07_BC as well as the quick spread of CRF07_BC in China.
Collapse
|
4
|
Jiang H, Lan G, Zhu Q, Feng Y, Liang S, Li J, Zhou X, Lin M, Shao Y. Impacts of HIV-1 Subtype Diversity on Long-Term Clinical Outcomes in Antiretroviral Therapy in Guangxi, China. J Acquir Immune Defic Syndr 2022; 89:583-591. [PMID: 34966146 PMCID: PMC8900993 DOI: 10.1097/qai.0000000000002906] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Comprehensively estimating the impacts of HIV-1 subtype diversity on long-term clinical outcomes during antiretroviral therapy (ART) can help inform program recommendations. METHODS The HIV-1 sequence data and clinical records of 5950 patients from all 14 prefectures in Guangxi, China, during 2008-2020 were included. Evolutional trends of CD4+ T-lymphocyte count and viral load were explored, and the effects of HIV-1 subtypes on clinical outcomes were estimated by the Cox proportional hazards model. The polymorphisms involved in drug resistance mutation were analyzed. RESULTS Compared with patients with CRF07_BC, patients with CRF01_AE and CRF08_BC showed poor immunologic and virologic responses to antiretroviral therapy. Although the median expected time from ART initiation to virologic suppression for all patients was approximately 12 months, patients with CRF01_AE and CRF08_BC had a long time to achieve immune recovery and a short time to occur immunologic failure, compared with patients with CRF07_BC. Adjusted analysis showed that both CRF01_AE and CRF08_BC were the negative factors in immune recovery and long-term mortality. In addition, CRF08_BC was a negative factor in virologic suppression and a risk factor of virologic failure. This poor virologic response might result from the high prevalence of drug resistance mutation in CRF08_BC. CONCLUSIONS Compared with patients with CRF07_BC, patients with CRF01_AE could benefit more from immediate ART, and patients with CRF08_BC are more suitable for PI-based regimens. These data emphasize the importance of routine HIV-1 genotyping before ART, immediate ART, and personalized ART regimens to improve the prognosis for patients undergoing ART.
Collapse
Affiliation(s)
- He Jiang
- Guangxi Key Laboratory of AIDS Prevention and Control and Achievement Transformation, Guangxi Center for Disease Prevention and Control, Nanning, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; and
- State of Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, China
| | - Guanghua Lan
- Guangxi Key Laboratory of AIDS Prevention and Control and Achievement Transformation, Guangxi Center for Disease Prevention and Control, Nanning, Guangxi, China
| | - Qiuying Zhu
- Guangxi Key Laboratory of AIDS Prevention and Control and Achievement Transformation, Guangxi Center for Disease Prevention and Control, Nanning, Guangxi, China
| | - Yi Feng
- State of Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, China
| | - Shujia Liang
- Guangxi Key Laboratory of AIDS Prevention and Control and Achievement Transformation, Guangxi Center for Disease Prevention and Control, Nanning, Guangxi, China
| | - Jianjun Li
- Guangxi Key Laboratory of AIDS Prevention and Control and Achievement Transformation, Guangxi Center for Disease Prevention and Control, Nanning, Guangxi, China
| | - Xinjuan Zhou
- Guangxi Key Laboratory of AIDS Prevention and Control and Achievement Transformation, Guangxi Center for Disease Prevention and Control, Nanning, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; and
| | - Mei Lin
- Guangxi Key Laboratory of AIDS Prevention and Control and Achievement Transformation, Guangxi Center for Disease Prevention and Control, Nanning, Guangxi, China
| | - Yiming Shao
- Guangxi Key Laboratory of AIDS Prevention and Control and Achievement Transformation, Guangxi Center for Disease Prevention and Control, Nanning, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, China; and
- State of Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, China
| |
Collapse
|
5
|
Li K, Liu M, Chen H, Li J, Liang Y, Feng Y, Xing H, Shao Y. Using molecular transmission networks to understand the epidemic characteristics of HIV-1 CRF08_BC across China. Emerg Microbes Infect 2021; 10:497-506. [PMID: 33657968 PMCID: PMC7993390 DOI: 10.1080/22221751.2021.1899056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/12/2022]
Abstract
HIV-1 CRF08_BC has become a major epidemic in heterosexuals and intravenous drug users (IDUs) in southern China. In order to evaluate the trends of its epidemic and facilitate targeted HIV prevention, we constructed the genetic transmission networks based on its pol sequences, derived from the National HIV Molecular Epidemiology Survey. Through retrospective network analysis, to study the epidemiological and demographic correlations with the transmission network. Of the 1,829 study subjects, 639 (34.9%) were clustered in 151 transmission networks. Factors associated with increased clustering include IDUs, heterosexual men, young adults and people with lower education (P < 0.05 for all). The IDUs, MSM, young adult and person with low education had more potential transmission links as well (P < 0.05 for all). The most crossover links were found between heterosexual women and IDUs, with 30.9% heterosexual women linked to IDUs. The crossover links heterosexual women were mainly those with middle age and single (P < 0.001). This study indicated that the HIV-1 CRF08_BC epidemic was still on going in China with more than one third of the infected people clustered in the transmission networks. Meanwhile, the study could help identify the active CRF08_BC spreader in the local community and greatly facilitate précising AIDS prevention with targeted intervention.
Collapse
Affiliation(s)
- Kang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, China CDC, Beijing, People’s Republic of China
| | - Meiliang Liu
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, People’s Republic of China
| | - Huanhuan Chen
- Guangxi Center for Disease Prevention and Control, Nanning, People’s Republic of China
| | - Jianjun Li
- Guangxi Center for Disease Prevention and Control, Nanning, People’s Republic of China
| | - Yanling Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, China CDC, Beijing, People’s Republic of China
- Guangxi Key Laboratory of AIDS Prevention and Treatment & Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, School of Public Health, Guangxi Medical University, Nanning, People’s Republic of China
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, China CDC, Beijing, People’s Republic of China
| | - Hui Xing
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, China CDC, Beijing, People’s Republic of China
| | - Yiming Shao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, China CDC, Beijing, People’s Republic of China
- Guangxi Center for Disease Prevention and Control, Nanning, People’s Republic of China
| |
Collapse
|
6
|
Wang X, Zhang Y, Liu Y, Li H, Jia L, Han J, Li T, Wang X, Li J, Wen H, Li L. Phylogenetic Analysis of Sequences in the HIV Database Revealed Multiple Potential Circulating Recombinant Forms in China. AIDS Res Hum Retroviruses 2021; 37:694-705. [PMID: 33390081 DOI: 10.1089/aid.2020.0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
HIV recombination contributes greatly to its diversity and produces many circulating recombinant forms (CRFs) and unique recombinant forms (URFs). In China, 24 CRFs have been reported to date, and CRFs cause more than 80% of HIV infections. However, the prevalence of CRFs might still be underestimated, as a high level of onward transmission of URFs has been reported. In this study, we analyzed all Chinese pol region (2,253-3,252) sequences in the HIV Database to evaluate potential new CRFs in China. HIV-1 genotypes were verified by the Context-based Modeling for Expeditious Typing (COMET) tool. Maximum-likelihood (ML) trees were constructed based on sequences with unassigned genotypes. Cluster Picker 1.2.1 was used to identify transmission clusters. Meanwhile, a jumping-profile hidden Markov model (jpHMM) was used to perform recombination breakpoint analysis. Beast 1.7.5 was used to estimate the time of the most recent common ancestor of new CRFs. In the HIV databases, CRF01_AE was the most prevalent genetic form in China, accounting for 39.69% of all national infections, followed by CRF07_BC (20.47%), subtype B (17.50%), CRF08_BC (6.60%), subtype C (6.28%), CRF55_01B (2.06%), and other CRFs (1.77%). The URFs were responsible for 5.31% of all infections nationwide. Among URFs, genomes comprising BC, 01BC, 01B, and 01C were dominant. Finally, 17 potential CRFs and 1 novel CRF were identified. BEAST analysis indicates that novel CRF originated around in 2009. The data highlight that more CRFs have been spreading in China. HIV-1 pol sequences that are commonly used to explore drug resistance are helpful for the surveillance of epidemics of different HIV-1 genotypes.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory of Infectious Disease Control and Prevention in Universities of Shandong, Jinan, China
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu Zhang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yongjian Liu
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hanping Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lei Jia
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingwan Han
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tianyi Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolin Wang
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingyun Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hongling Wen
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Key Laboratory of Infectious Disease Control and Prevention in Universities of Shandong, Jinan, China
| | - Lin Li
- Department of AIDS Research, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|