1
|
Wang B, Chen Q, Zou X, Zheng P, Zhu J. Advances in non-coding RNA in tendon injuries. Front Genet 2024; 15:1396195. [PMID: 38836038 PMCID: PMC11148651 DOI: 10.3389/fgene.2024.1396195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024] Open
Abstract
Tendons serve as important weight-bearing structures that smoothly transfer forces from muscles to skeletal parts, allowing contracted muscle movements to be translated into corresponding joint movements. For body mechanics, tendon tissue plays an important role. If the tendons are damaged to varying degrees, it can lead to disability or pain in patients. That is to say, tendon injuries havea significant impact on quality of life and deserve our high attention. Compared to other musculoskeletal tissues, tendons are hypovascular and hypo-cellular, and therefore have a greater ability to heal, this will lead to a longer recovery period after injury or even disability, which will significantly affect the quality of life. There are many causes of tendon injury, including trauma, genetic factors, inflammation, aging, and long-term overuse, and the study of related mechanisms is of great significance. Currently, tendon there are different treatment modalities, like injection therapy and surgical interventions. However, they have a high failure rate due to different reasons, among which the formation of adhesions severely weakens the tissue strength, affecting the functional recovery and the patient's quality of life. A large amount of data has shown that non coding RNAs can play a huge role in this field, thus attracting widespread attention from researchers from various countries. This review summarizes the relevant research progress on non-coding RNAs in tendon injuries, providing new ideas for a deeper understanding of tendon injuries and exploring new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Bin Wang
- Department of Plastics, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, China
| | - Qiang Chen
- Center for Plastic and Reconstructive Surgery, Department of Hand and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaodi Zou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ping Zheng
- Department of Plastics, Tiantai People's Hospital of Zhejiang Province (Tiantai Branch of Zhejiang Provincial People's Hospital), Hangzhou Medical College, Taizhou, China
| | - Jie Zhu
- Center for General Practice Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
2
|
Analysis of the lncRNA-Associated Competing Endogenous RNA (ceRNA) Network for Tendinopathy. Genet Res (Camb) 2022; 2022:9792913. [PMID: 35645614 PMCID: PMC9119753 DOI: 10.1155/2022/9792913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Background We aimed to construct the lncRNA-associated competing endogenous RNA (ceRNA) network and distinguish feature lncRNAs associated with tendinopathy. Methods We downloaded the gene profile of GSE26051 from the Gene Expression Omnibus (GEO), including 23 normal samples and 23 diseased tendons. Differentially expressed mRNAs (DEmRNAs) and differentially expressed lncRNAs (DElncRNAs) were identified, and functional and pathway enrichment analyses were performed. Protein-protein interaction (PPI) network was constructed and further analyzed by module mining. Moreover, a ceRNA regulatory network was constructed based on the identified lncRNA–mRNA coexpression relationship pairs and miRNA–mRNA regulation pairs. Results We identified 1117 DEmRNAs and 57 DElncRNAs from the GEO data. The downregulated DEmRNAs were particularly associated with muscle contraction and muscle filament, while the upregulated ones were linked to extracellular matrix organization and cell adhesion. From the PPI network, 11 modules were extracted. Genes in MCODE 2 (such as TPM4) were significantly involved in cardiomyopathy, and genes in MCODE 4 (such as COL4A3 and COL4A4) were involved in focal adhesion, ECM-receptor interaction, and PI3K-Akt signaling pathway. The ceRNA network contained 7 lncRNAs (MIR133A1HG, LINC01405, PRKCQ-AS1, C10orf71-AS1, MBNL1-AS1, HOTAIRM1, and DNM3OS), 63 mRNAs, and 41 miRNAs. Downregulated lncRNA MIR133A1HG could competitively bind with hsa-miR-659-3p and hsa-miR-218-1-3p to regulate the TPM3. Meanwhile, MIR133A1HG could competitively bind with hsa-miR-1179 to regulate the COL4A3. Downregulated C10orf71-AS1 could competitively bind with hsa-miR-130a-5p to regulate the COL4A4. Conclusions Seven important lncRNAs, particularly MIR133A1HG and C10orf71-AS1, were found associated with tendinopathy according to the lncRNA-associated ceRNA network.
Collapse
|
3
|
Zhu YX, Huang JQ, Ming YY, Zhuang Z, Xia H. Screening of key biomarkers of tendinopathy based on bioinformatics and machine learning algorithms. PLoS One 2021; 16:e0259475. [PMID: 34714891 PMCID: PMC8555777 DOI: 10.1371/journal.pone.0259475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Tendinopathy is a complex multifaceted tendinopathy often associated with overuse and with its high prevalence resulting in significant health care costs. At present, the pathogenesis and effective treatment of tendinopathy are still not sufficiently elucidated. The purpose of this research is to intensely explore the genes, functional pathways, and immune infiltration characteristics of the occurrence and development of tendinopathy. The gene expression profile of GSE106292, GSE26051 and GSE167226 are downloaded from GEO (NCBI comprehensive gene expression database) and analyzed by WGCNA software bag using R software, GSE26051, GSE167226 data set is combined to screen the differential gene analysis. We subsequently performed gene enrichment analysis of Gene Ontology (GO) and "Kyoto Encyclopedia of Genes and Genomes" (KEGG), and immune cell infiltration analysis. By constructing the LASSO regression model, Support vector machine (SVM-REF) and Gaussian mixture model (GMMs) algorithms are used to screen, to identify early diagnostic genes. We have obtained a total of 171 DEGs through WGCNA analysis and differentially expressed genes (DEGs) screening. By GO and KEGG enrichment analysis, it is found that these dysregulated genes were related to mTOR, HIF-1, MAPK, NF-κB and VEGF signaling pathways. Immune infiltration analysis showed that M1 macrophages, activated mast cells and activated NK cells had infiltration significance. After analysis of THE LASSO SVM-REF and GMMs algorithms, we found that the gene MACROD1 may be a gene for early diagnosis. We identified the potential of tendon disease early diagnosis way and immune gene regulation MACROD1 key infiltration characteristics based on comprehensive bioinformatics analysis. These hub genes and functional pathways may as early biomarkers of tendon injuries and molecular therapy level target is used to guide drug and basic research.
Collapse
Affiliation(s)
- Ya xi Zhu
- District 1, Department of Orthopedics, Xiangtan Central Hospital, Yuhu District, Xiangtan City, Hunan Province, China
- Nanhua University, Hengyang City, Hunan Province, China
| | - Jia qiang Huang
- District 1, Department of Orthopedics, Xiangtan Central Hospital, Yuhu District, Xiangtan City, Hunan Province, China
| | - Yu yang Ming
- Nanhua University, Hengyang City, Hunan Province, China
- Department of Orthopedics, Xiangtan Central Hospital, Yuhu District, Xiangtan City, Hunan Province, China
| | - Zhao Zhuang
- Academy of Anesthesiology, Weifang Medical University, Weifang, China
| | - Hong Xia
- Department of Orthopedics, Xiangtan Central Hospital, Yuhu District, Xiangtan City, Hunan Province, China
- * E-mail:
| |
Collapse
|
4
|
Chen Q, Hou D, Suo Y, Zhu Z. LncRNA XIST Prevents Tendon Adhesion and Promotes Tendon Repair Through the miR-26a-5p/COX2 Pathway. Mol Biotechnol 2021; 64:424-433. [PMID: 34714511 DOI: 10.1007/s12033-021-00419-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
Tendon adhesion is the biggest obstacle to repair of tendon injury. Long-chain non-coding RNA X-inactive specific transcript (lncRNA XIST) is highly expressed in populations at high risk of tendon injury. However, whether XIST participates in tendon injury and the specific mechanism remain unknown. Here, we aimed to explore the effects and underlying mechanism of XIST in tendon injury. A mouse model of tendon injury was constructed by the transection method in vivo. XIST and COX2 were highly expressed in tendon tissues of mice with tendon injury, while miR-26a-5p was lowly expressed. Fibroblasts were isolated from tendon injury mice. Overexpression of XIST promoted fibroblast proliferation and upregulated α-SMA and Collagen I protein expression, while silencing XIST indicated the opposite effects. Further dual-luciferase reporter gene assay and RIP assay verified a targeting relationship between XIST and miR-26a-5p, as well as miR-26a-5p and COX2, and XIST targeted miR-26a-5p to act on COX2 expression. miR-26a-5p inhibition and COX2 overexpression reversed the decrease in fibroblast proliferation and the downregulation of α-SMA and Collagen I expression caused by XIST silencing, while interference with si-COX2 eliminated the effects of miR-26a-5p inhibitor. This study revealed that XIST promoted fibroblast proliferation and the formation of tendon adhesion through miR-26a-5p/COX2 pathway, suggesting that XIST/miR-26a-5p/COX2 may be a potential target for the treatment of tendon injury.
Collapse
Affiliation(s)
- Qiang Chen
- Medical College of Soochow University, Soochow, 215006, Jiangsu, People's Republic of China.,Department of Plastic and Hand Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158# Shangtang Rd., Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Dongjie Hou
- Department of Plastic and Hand Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158# Shangtang Rd., Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Yan Suo
- Department of Plastic and Hand Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158# Shangtang Rd., Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Ziguan Zhu
- Department of Plastic and Hand Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158# Shangtang Rd., Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Ilaltdinov AW, Gong Y, Leong DJ, Gruson KI, Zheng D, Fung DT, Sun L, Sun HB. Advances in the development of gene therapy, noncoding RNA, and exosome-based treatments for tendinopathy. Ann N Y Acad Sci 2020; 1490:3-12. [PMID: 32501571 DOI: 10.1111/nyas.14382] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022]
Abstract
Tendinopathy is a common musculoskeletal disorder characterized by chronic low-grade inflammation and tissue degeneration. Tendons have poor innate healing ability and there is currently no cure for tendinopathy. Studies elucidating mechanisms underlying the pathogenesis of tendinopathy and mechanisms mediating the genesis of tendons during development have provided novel targets and strategies to enhance tendon healing and repair. This review summarizes the current understanding and treatments for tendinopathy. The review also highlights recent advances in gene therapy, the potential of noncoding RNAs, such as microRNAs, and exosomes, which are nanometer-sized extracellular vesicles secreted from cells, for the treatment of tendinopathy.
Collapse
Affiliation(s)
- Angela Wang Ilaltdinov
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York.,Department of Biomedical Engineering, City College of New York, New York, New York.,New York R&D Center for Translational Medicine and Therapeutics, Inc., New Rochelle, New York
| | - Yubao Gong
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Orthopaedic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Daniel J Leong
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York.,New York R&D Center for Translational Medicine and Therapeutics, Inc., New Rochelle, New York
| | - Konrad I Gruson
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York.,Department of Neurology, Albert Einstein College of Medicine, Bronx, New York.,Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - David T Fung
- New York R&D Center for Translational Medicine and Therapeutics, Inc., New Rochelle, New York
| | - Li Sun
- New York R&D Center for Translational Medicine and Therapeutics, Inc., New Rochelle, New York
| | - Hui B Sun
- Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York.,Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York.,New York R&D Center for Translational Medicine and Therapeutics, Inc., New Rochelle, New York
| |
Collapse
|
6
|
Ge Z, Zhou B, Zheng X, Yang M, Lü J, Deng H, Tang K, Chen W. [Circular RNA expression pattern and competing endogenous RNA network involved in rotator cuff tendinopathy]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:608-614. [PMID: 32410429 DOI: 10.7507/1002-1892.201911094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Objective To detect the differentially expressed circular RNA (circRNA) in rotator cuff tendinopathy and analyze the potential molecular mechanism of these parental genes. Methods Ten supraspinatus tendons donated from patients who underwent tendon repair surgery between June 2018 and June 2019 were used for RNA-sequence. All rotator cuff tendinopathy and normal tendon samples were confirmed by MRI, histological staining, and observation by arthroscopy. All pathological tendons were matched with tendon samples for patients' age, gender, body mass index, and Bonar score. The bioinformatic analysis was performed based on the differentially expressed circRNA and their parental genes, including gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and competing endogenous RNA (ceRNA) network construction. Results There were 94 differentially expressed circRNAs, including 31 up-regulated and 63 down-regulated, detected between the rotator cuff tendinopathy and normal tendon samples with |log2 fold change (FC)| >2, P<0.05. GO analysis showed that the genes were mostly enriched in response to cyclic adenosine monophosphate (cAMP). KEGG pathway analysis showed that the most genes were enriched in extracellular matrix-receptor interaction, protein digestion and absorption, cell cycle, and nuclear factor κB signaling pathway. ceRNA networks showed the interactions among circRNAs, mRNAs, and miRNAs. And circRNA.8951-has-miR-6089-DNMT3B was the most sum max energy. Conclusion This bioinformatic study reveals several potential therapeutic targets for rotator cuff tendinopathy, which paves the way to better treatment and prevention of this disorder.
Collapse
Affiliation(s)
- Zilu Ge
- Department of Orthopeadics/Sports Medicine Center, the First Affiliated Hospital of the Army Medical University, Chongqing, 400038, P.R.China
| | - Binghua Zhou
- Department of Orthopeadics/Sports Medicine Center, the First Affiliated Hospital of the Army Medical University, Chongqing, 400038, P.R.China
| | - Xiaolong Zheng
- Department of Orthopeadics/Sports Medicine Center, the First Affiliated Hospital of the Army Medical University, Chongqing, 400038, P.R.China
| | - Mingyu Yang
- Department of Orthopeadics/Sports Medicine Center, the First Affiliated Hospital of the Army Medical University, Chongqing, 400038, P.R.China
| | - Jingtong Lü
- Department of Orthopeadics/Sports Medicine Center, the First Affiliated Hospital of the Army Medical University, Chongqing, 400038, P.R.China
| | - Honghao Deng
- Department of Orthopeadics/Sports Medicine Center, the First Affiliated Hospital of the Army Medical University, Chongqing, 400038, P.R.China
| | - Kanglai Tang
- Department of Orthopeadics/Sports Medicine Center, the First Affiliated Hospital of the Army Medical University, Chongqing, 400038, P.R.China
| | - Wan Chen
- Department of Orthopeadics/Sports Medicine Center, the First Affiliated Hospital of the Army Medical University, Chongqing, 400038, P.R.China
| |
Collapse
|
7
|
Yu Y, Chen Y, Zheng YJ, Weng QH, Zhu SP, Zhou DS. LncRNA TUG1 promoted osteogenic differentiation through promoting bFGF ubiquitination. In Vitro Cell Dev Biol Anim 2020; 56:42-48. [PMID: 31907757 DOI: 10.1007/s11626-019-00410-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
LncRNA TUG1 has the potential to promote the osteogenic differentiation of several cells, but the role of lncRNA TUG1 in osteogenic differentiation of tendon stem/progenitor cells (TSPCs) is still unknown. This study aims to determine the role of lncRNA TUG1 in osteogenic differentiation of TSPCs. bFGF, RUNX2, and Osterix protein expressions were detected by western blot. LncRNA TUG1 and bFGF expression was detected by qRT-PCR. RNA immunoprecipitation (RIP) assay was used to confirm the interaction between TUG1 and bFGF2. Ubiquitination assay was used to determine the ubiquitination of bFGF protein. During osteogenic differentiation, the protein expression of bFGF was significantly downregulated in TSPCs, and the expression of TUG1 was significantly elevated in TSPCs. Interfering TUG1 or overexpressing bFGF suppressed osteogenic differentiation of TSPCs. In addition, lncRNA TUG1 interacted with bFGF, and lncRNA TUG1 promoted the ubiquitination of bFGF protein. We also determined that lncRNA TUG1 downregulated bFGF protein expression through promoting the ubiquitination of bFGF. LncRNA TUG1 promoted the osteogenic differentiation of TSPCs through promoting bFGF ubiquitination.
Collapse
Affiliation(s)
- Yang Yu
- Department of Traumatic Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China.,Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ying Chen
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yi-Jing Zheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qi-Hao Weng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Si-Pin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dong-Sheng Zhou
- Department of Traumatic Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, No.324, Jingwu Road, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
8
|
Zhu W, Meng YF, Xing Q, Tao JJ, Lu J, Wu Y. Identification of lncRNAs involved in biological regulation in early age-related macular degeneration. Int J Nanomedicine 2017; 12:7589-7602. [PMID: 29089757 PMCID: PMC5655033 DOI: 10.2147/ijn.s140275] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is one of the most common causes of adult blindness in developed countries. However, the role of long noncoding RNAs (lncRNAs) in the development and progression of early AMD is unclear. Methods We established the lncRNA profile of early AMD by reannotation of microarrays from the gene expression omnibus database. Quantitative real-time polymerase chain reaction was used to determine the expression of selected lncRNAs. Results The expression profiles of 9 cases of AMD and 7 controls were studied. A total of 266 differentially expressed genes (DEGs) were detected (94 upregulated and 172 downregulated). Among all the DEGs, 64 were lncRNAs. Advanced bioinformatics analyses demonstrated that differentially expressed lncRNAs could play significant roles in visual perception, sensory perception of light stimulus, and cognition. The pathway analyses showed that the two most significantly influenced Kyoto Encyclopedia of Genes and Genomes pathways were those of phototransduction and purine metabolism. By the analyses of the key lncRNAs, it was found that RP11-234O6.2 was downregulated in the aging retinal pigment epithelium (RPE) cellular model. Exogenous RP11-234O6.2 treatment led to increased cell viability and improved apoptosis but it did not affect the cell migration ability of aging RPE cells. Conclusion This study indicated that lncRNAs are differentially expressed in early AMD and may produce important regulative effects. An lncRNA, RP11-234O6.2, might be involved in the biological regulation of early AMD and have therapeutic potential.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Yi-Fang Meng
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Qian Xing
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Jian-Jun Tao
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Jiong Lu
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Yan Wu
- Department of Ophthalmology, First Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
9
|
Gao H, Dong Z, Wei W, Shao L, Jin L, Lv Y, Zhao G, Jin S. Integrative analysis for the role of long non-coding RNAs in radiation-induced mouse thymocytes responses. Acta Biochim Biophys Sin (Shanghai) 2017; 49:51-61. [PMID: 27864278 DOI: 10.1093/abbs/gmw114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/14/2016] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a critical class of regulatory molecules involved in a variety of biological functions; however, their role in immune cells response to radiation is unknown. Therefore, in this study we used integrative analysis to determine the expression profile of lncRNAs in mouse thymocytes and the potential functions of lncRNAs in response to radiation. Microarray data profiling indicated that 53 lncRNAs (36 up-regulated and 17 down-regulated) and 74 coding genes (39 up-regulated and 35 down-regulated) were highly differentially expressed in the high dose radiation (HDR) group compared with the control group. In the low dose radiation (LDR) group, only one lncRNA was down-regulated. Moreover, as compared with the control group, 109 lncRNA pathways in the HDR group and 14 lncRNA pathways in the LDR group were differentially expressed. Our data revealed the expression pattern of lncRNAs in mouse thymocytes and predicted their potential functions in response to LDR and HDR. In the HDR group, GO analysis showed that the role of lncRNAs in damage responses of thymocytes to HDR mainly involved chromatin organization and cell death. These findings might improve our understanding of the role of lncRNAs in LDR- and HDR-induced immune cells and provide a new experimental basis for further investigation.
Collapse
Affiliation(s)
- Hui Gao
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, Changchun 130021, China
- Department of Orthopedics, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhuo Dong
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, Changchun 130021, China
| | - Wei Wei
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, Changchun 130021, China
| | - Lihong Shao
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, Changchun 130021, China
| | - Linlin Jin
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, Changchun 130021, China
| | - Yahui Lv
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, Changchun 130021, China
| | - Gang Zhao
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, Changchun 130021, China
| | - Shunzi Jin
- Ministry of Health Key Laboratory of Radiobiology, Jilin University, Changchun 130021, China
| |
Collapse
|