1
|
Meng X, Wu Y, Bu W. Functional CT Contrast Nanoagents for the Tumor Microenvironment. Adv Healthc Mater 2021; 10:e2000912. [PMID: 32691929 DOI: 10.1002/adhm.202000912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Understanding the detailed tumor microenvironment (TME) is essential to achieve effective treatment of tumor, because TME has an extremely profound influence on the occurrence, development, invasion, and metastasis of tumor. It is of great significance to realize accurate diagnosis of the TME by using functional computed tomography (CT) contrast nanoagents (FCTNAs). Here, an overview of FCTNAs that respond to the overexpressed receptors, acidic microenvironment, overexpressed glutathione and enzymes, and hypoxia in tumor is provided, and also prospects the advance of novel spectral CT technique to detect the TME precisely. Utilizing FCTNAs is expected to achieve accurate monitoring of the TME and further provide guidance for the effective personalized tumor treatment in clinic.
Collapse
Affiliation(s)
- Xianfu Meng
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
| | - Yelin Wu
- Tongji University Cancer Center Shanghai Tenth People's Hospital Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Wenbo Bu
- Department of Materials Science Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
2
|
Zhou Z, Liu Y, Meng K, Guan W, He J, Liu S, Zhou Z. Application of spectral CT imaging in evaluating lymph node metastasis in patients with gastric cancers: initial findings. Acta Radiol 2019; 60:415-424. [PMID: 29979106 DOI: 10.1177/0284185118786076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Traditional computed tomography (CT) can predict the lymph node metastasis of gastric cancers with moderate accuracy; however, investigation of spectral CT imaging in this field is still limited. PURPOSE To explore the application of spectral CT imaging in evaluating lymph node metastasis in patients with gastric cancers. MATERIAL AND METHODS Twenty-four patients with gastric cancers prospectively underwent spectral CT imaging in the arterial phase. The short and long diameters, material concentrations, and CT values were measured and compared between lymph nodes with and without metastasis. The diagnostic performance of the CT index in identifying metastatic lymph nodes was analyzed with receiver operating characteristic (ROC) analysis. RESULTS A total of 102 lymph nodes (77 metastatic, 25 non-metastatic) were detected on spectral CT imaging with the reference of postoperative pathologic exanimation. The short and long diameters, water/fat concentrations, CT value, and ratio between lymph nodes vs. tumors of metastatic lymph nodes were significantly higher than those of non-metastatic ones (all P < 0.05). With a cut-off of 0.785, the CT ratio of lymph node/tumor on 70-keV monochromatic images yielded an accuracy of 81.4% in differentiating lymph nodes with and without metastasis. CONCLUSION Spectral CT imaging detects lymph nodes more clearly, and the CT ratio of lymph node/tumor on 70-keV monochromatic images holds great potential in differentiating lymph nodes with and without metastasis, which is more accurate than size measurement.
Collapse
Affiliation(s)
- Zhuping Zhou
- 1 Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Yu Liu
- 1 Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Kui Meng
- 2 Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Wenxian Guan
- 3 Department of Gastrointestinal Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Jian He
- 1 Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Song Liu
- 1 Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| | - Zhengyang Zhou
- 1 Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, PR China
| |
Collapse
|
3
|
Partovi S, Trischman T, Rafailidis V, Ganguli S, Rengier F, Goerne H, Rajiah P, Staub D, Patel IJ, Oliveira G, Ghoshhajra B. Multimodality imaging assessment of endoleaks post-endovascular aortic repair. Br J Radiol 2018; 91:20180013. [PMID: 29658769 DOI: 10.1259/bjr.20180013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Endoleaks are a common complication of endovascular aortic repair (EVAR). As a result, patients require lifelong imaging surveillance following EVAR. In current clinical practice, evaluation for endoleaks is predominantly performed with CT angiography (CTA). Due to the significant cumulative radiation burden associated with repetitive CTA imaging, as well as the repeated administration of nephrotoxic contrast agent, contrast-enhanced ultrasound (CEUS) and magnetic resonance angiography (MRA) have evolved as potential modalities for lifelong surveillance post-EVAR. In this paper, multimodality imaging, including CTA, CEUS and MRA, for the surveillance of endoleaks is discussed. Further, new CTA techniques for radiation reduction are elaborated. Additionally, imagery for three cases of aortic endoleak detection using CTA and five cases using MRA are presented. Imaging for different types of endoleaks with CTA, MRA and CEUS are presented. For lifelong endoleak surveillance post-EVAR, CTA is still regarded as the imaging modality of choice. However, advancements in CEUS and MRA technique enable partial replacement of CTA in certain patients.
Collapse
Affiliation(s)
- Sasan Partovi
- 1 Department of Radiology, Section of Vascular and Interventional Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University , Cleveland, OH , USA
| | - Thomas Trischman
- 1 Department of Radiology, Section of Vascular and Interventional Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University , Cleveland, OH , USA
| | - Vasileios Rafailidis
- 2 Department of Radiology, AHEPA University General Hospital, Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Suvranu Ganguli
- 3 Department of Radiology, Division of Cardiovascular Imaging, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Fabian Rengier
- 4 Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg , Heidelberg , Germany
| | - Harold Goerne
- 5 Department of Radiology, Division of Cardiothoracic Imaging, UT Southwestern Medical Center , Dallas, TX , USA
| | - Prabhakar Rajiah
- 5 Department of Radiology, Division of Cardiothoracic Imaging, UT Southwestern Medical Center , Dallas, TX , USA
| | - Daniel Staub
- 6 Department of Vascular Medicine, University Hospital Basel, University of Basel , Basel , Switzerland
| | - Indravadan J Patel
- 1 Department of Radiology, Section of Vascular and Interventional Radiology, University Hospitals Cleveland Medical Center, Case Western Reserve University , Cleveland, OH , USA
| | - George Oliveira
- 3 Department of Radiology, Division of Cardiovascular Imaging, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - Brian Ghoshhajra
- 3 Department of Radiology, Division of Cardiovascular Imaging, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| |
Collapse
|