1
|
Tucker EJ, Sharp MF, Lokchine A, Bell KM, Palmer CS, Kline BL, Robevska G, van den Bergen J, Dulon J, Stojanovski D, Ayers KL, Touraine P, Crismani W, Jaillard S, Sinclair AH. Biallelic FANCA variants detected in sisters with isolated premature ovarian insufficiency. Clin Genet 2024; 106:321-335. [PMID: 38779778 DOI: 10.1111/cge.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Premature ovarian insufficiency is a common form of female infertility affecting up to 4% of women and characterised by amenorrhea with elevated gonadotropin before the age of 40. Oocytes require controlled DNA breakage and repair for homologous recombination and the maintenance of oocyte integrity. Biallelic disruption of the DNA damage repair gene, Fanconi anemia complementation group A (FANCA), is a common cause of Fanconi anaemia, a syndrome characterised by bone marrow failure, cancer predisposition, physical anomalies and POI. There is ongoing dispute about the role of heterozygous FANCA variants in POI pathogenesis, with insufficient evidence supporting causation. Here, we have identified biallelic FANCA variants in French sisters presenting with POI, including a novel missense variant of uncertain significance and a likely pathogenic deletion that initially evaded detection. Functional studies indicated no discernible effect on DNA damage sensitivity in patient lymphoblasts. These novel FANCA variants add evidence that heterozygous loss of one allele is insufficient to cause DNA damage sensitivity and POI. We propose that intragenic deletions, that are relatively common in FANCA, may be missed without careful analysis, and could explain the presumed causation of heterozygous variants. Accurate variant curation is critical to optimise patient care and outcomes.
Collapse
Affiliation(s)
- Elena J Tucker
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael F Sharp
- DNA Repair and Recombination Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- The Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Victoria, Australia
| | - Anna Lokchine
- CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S1085, Univ Rennes, Rennes, France
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Katrina M Bell
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Bioinformatics, Murdoch Children's Research Institute, Victoria, Australia
| | - Catherine S Palmer
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brianna L Kline
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Gorjana Robevska
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Jocelyn van den Bergen
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Jérôme Dulon
- Department of Endocrinology and Reproductive Medicine, AP-HP, Sorbonne University, Paris, France
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Katie L Ayers
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, AP-HP, Sorbonne University, Paris, France
| | - Wayne Crismani
- DNA Repair and Recombination Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Sylvie Jaillard
- CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S1085, Univ Rennes, Rennes, France
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
| | - Andrew H Sinclair
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Brahmbhatt S, Agarwal A, Shetty D, Desai A, Bhatt AA. "Genetic tumor syndromes of the head and neck: Update in the genomic era". Neuroradiol J 2024:19714009241269462. [PMID: 39110991 PMCID: PMC11571379 DOI: 10.1177/19714009241269462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Genetic tumor syndromes are due to inherited genetic mutations, which have recently come to the attention of clinicians due to the widespread adoption of DNA sequencing, ultimately leading to imaging for surveillance. As a result, radiologists must be familiar with the clinical, genetic, and radiologic features of these syndromes. This article reviews genetic tumor syndromes of the head and neck according to the recently updated WHO's 5th edition.
Collapse
Affiliation(s)
| | - Amit Agarwal
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Dhruv Shetty
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Amit Desai
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | - Alok A. Bhatt
- Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
3
|
Harrold EC, Stadler ZK. Upper Gastrointestinal Cancers and the Role of Genetic Testing. Hematol Oncol Clin North Am 2024; 38:677-691. [PMID: 38458854 DOI: 10.1016/j.hoc.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Beyond the few established hereditary cancer syndromes with an upper gastrointestinal cancer component, there is increasing recognition of the contribution of novel pathogenic germline variants (gPVs) to upper gastrointestinal carcinogenesis. The detection of gPVs has potential implications for novel treatment approaches of the index cancer patient as well as long-term implications for surveillance and risk-reducing measures for cancer survivors and far-reaching implications for the patients' family. With widespread availability of multigene panel testing, new associations may be identified with germline-somatic integration being critical to determining true causality of novel gPVs. Comprehensive cancer care should incorporate both somatic and germline testing.
Collapse
Affiliation(s)
- Emily C Harrold
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medical Oncology, Mater Misericordiae University Hospital, Dublin, Ireland. https://twitter.com/EmilyHarrold6
| | - Zsofia K Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Yang L, Ruan Y, Chen B, Zhu Y, Xu H. Circ_0001671 regulates prostate cancer progression through miR-27b-3p/BLM axis. Sci Rep 2024; 14:12181. [PMID: 38806577 PMCID: PMC11133351 DOI: 10.1038/s41598-024-63068-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024] Open
Abstract
Prostate cancer (PCa) ranks as the second most prevalent cancer among males globally. However, the exact mechanisms underlying its progression remain inadequately elucidated. The present study sought to investigate the role and underlying molecular mechanism of hsa_circ_0001671 (circ_0001671) in the pathogenic behavior of PCa cells. Guided by the ceRNA theory, miR-27b-3p was employed to identify circRNAs that could potentially regulate Bloom Syndrome Protein (BLM). A series of experimental approaches including bioinformatics, luciferase assays, Fluorescent In Situ Hybridization (FISH), RNA-pulldown, and RNA Immunoprecipitation (RIP) were utilized to validate the miRNA sponge function of circ_0001671. Divergent primer PCR, RNase R treatments, and Sanger sequencing were conducted for the identification of circ_0001671. Quantitative RT-PCR and Western blot analyses were performed to validate gene expression levels. Both in vitro and in vivo experiments were conducted to assess the functional role of circ_0001671 in PCa cells.It was observed that the expression levels of circ_0001671 and BLM were significantly elevated in PCa tissues and cell lines, whereas miR-27b-3p showed decreased expression. Circ_0001671 was found to promote cellular proliferation, migration, and invasion, while inhibiting apoptosis. In vivo assays confirmed that circ_0001671 facilitated tumor growth. Further mechanistic studies revealed that circ_0001671 acted as a competing endogenous RNA (ceRNA) for BLM by sponging miR-27b-3p. The oncogenic role of circ_0001671 in PCa was shown to be modulated through the miR-27b-3p/BLM axis. In conclusion, circ_0001671 exerts an oncogenic effect in prostate cancer through the regulation of BLM by sponging miR-27b-3p, thus suggesting a novel molecular target for the treatment of PCa.
Collapse
Affiliation(s)
- Lihong Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Yong Ruan
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Yuhang Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang, 550025, China.
- College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Sharma A, Vinay K. Photosensitive Malar Rash in an Infant. Indian Dermatol Online J 2024; 15:562-563. [PMID: 38845661 PMCID: PMC11152476 DOI: 10.4103/idoj.idoj_556_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/19/2023] [Accepted: 09/15/2023] [Indexed: 06/09/2024] Open
Affiliation(s)
- Apoorva Sharma
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Keshavamurthy Vinay
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Wang X, Fukumoto T, Noma KI. Therapeutic strategies targeting cellular senescence for cancer and other diseases. J Biochem 2024; 175:525-537. [PMID: 38366629 PMCID: PMC11058315 DOI: 10.1093/jb/mvae015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/12/2024] [Accepted: 01/30/2024] [Indexed: 02/18/2024] Open
Abstract
Cellular senescence occurs in response to endogenous or exogenous stresses and is characterized by stable cell cycle arrest, alterations in nuclear morphology and secretion of proinflammatory factors, referred to as the senescence-associated secretory phenotype (SASP). An increase of senescent cells is associated with the development of several types of cancer and aging-related diseases. Therefore, senolytic agents that selectively remove senescent cells may offer opportunities for developing new therapeutic strategies against such cancers and aging-related diseases. This review outlines senescence inducers and the general characteristics of senescent cells. We also discuss the involvement of senescent cells in certain cancers and diseases. Finally, we describe a series of senolytic agents and their utilization in therapeutic strategies.
Collapse
Affiliation(s)
- Xuebing Wang
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
| | - Takeshi Fukumoto
- Division of Dermatology, Department of Internal Related, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | - Ken-ichi Noma
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo 060-0815, Japan
- Institute of Molecular Biology, University of Oregon, 1370 Franklin Blvd, Eugene, OR 97403, USA
| |
Collapse
|
7
|
Rahn K, Abdallah AT, Gan L, Herbrich S, Sonntag R, Benitez O, Malaney P, Zhang X, Rodriguez AG, Brottem J, Marx G, Brümmendorf TH, Ostareck DH, Ostareck-Lederer A, Crysandt M, Post SM, Naarmann-de Vries IS. Insight into the mechanism of AML del(9q) progression: hnRNP K targets the myeloid master regulators CEBPA (C/EBPα) and SPI1 (PU.1). BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195004. [PMID: 38008244 DOI: 10.1016/j.bbagrm.2023.195004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Deletions on the long arm of chromosome 9 (del(9q)) are recurrent abnormalities in about 2 % of acute myeloid leukemia cases, which usually involve HNRNPK and are frequently associated with other known aberrations. Based on an Hnrnpk haploinsufficient mouse model, a recent study demonstrated a function of hnRNP K in pathogenesis of myeloid malignancies via the regulation of cellular proliferation and myeloid differentiation programs. Here, we provide evidence that reduced hnRNP K expression results in the dysregulated expression of C/EBPα and additional transcription factors. CyTOF analysis revealed monocytic skewing with increased levels of mature myeloid cells. To explore the role of hnRNP K during normal and pathological myeloid differentiation in humans, we characterized hnRNP K-interacting RNAs in human AML cell lines. Notably, RNA-sequencing revealed several mRNAs encoding key transcription factors involved in the regulation of myeloid differentiation as targets of hnRNP K. We showed that specific sequence motifs confer the interaction of SPI1 and CEBPA 5' and 3'UTRs with hnRNP K. The siRNA mediated reduction of hnRNP K in human AML cells resulted in an increase of PU.1 and C/EBPα that is most pronounced for the p30 isoform. The combinatorial treatment with the inducer of myeloid differentiation valproic acid resulted in increased C/EBPα expression and myeloid differentiation. Together, our results indicate that hnRNP K post-transcriptionally regulates the expression of myeloid master transcription factors. These novel findings can inaugurate novel options for targeted treatment of AML del(9q) by modulation of hnRNP K function.
Collapse
Affiliation(s)
- Kerstin Rahn
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany; Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ali T Abdallah
- Interdisciplinary Center for Clinical Research (IZKF) Aachen, RWTH Aachen University, Germany; Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Lin Gan
- Interdisciplinary Center for Clinical Research (IZKF) Aachen, RWTH Aachen University, Germany
| | - Shelley Herbrich
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roland Sonntag
- Department of Internal Medicine III, University Hospital RWTH Aachen University, Aachen, Germany
| | - Oscar Benitez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Prerna Malaney
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaorui Zhang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashely G Rodriguez
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared Brottem
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gernot Marx
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Dirk H Ostareck
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Antje Ostareck-Lederer
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany
| | - Martina Crysandt
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany
| | - Sean M Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Isabel S Naarmann-de Vries
- Department of Intensive Care Medicine, University Hospital RWTH Aachen University, Aachen, Germany; Section of Bioinformatics and Systems Cardiology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
8
|
Baptista A, Brière G, Baudot A. Random walk with restart on multilayer networks: from node prioritisation to supervised link prediction and beyond. BMC Bioinformatics 2024; 25:70. [PMID: 38355439 PMCID: PMC10865648 DOI: 10.1186/s12859-024-05683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Biological networks have proven invaluable ability for representing biological knowledge. Multilayer networks, which gather different types of nodes and edges in multiplex, heterogeneous and bipartite networks, provide a natural way to integrate diverse and multi-scale data sources into a common framework. Recently, we developed MultiXrank, a Random Walk with Restart algorithm able to explore such multilayer networks. MultiXrank outputs scores reflecting the proximity between an initial set of seed node(s) and all the other nodes in the multilayer network. We illustrate here the versatility of bioinformatics tasks that can be performed using MultiXrank. RESULTS We first show that MultiXrank can be used to prioritise genes and drugs of interest by exploring multilayer networks containing interactions between genes, drugs, and diseases. In a second study, we illustrate how MultiXrank scores can also be used in a supervised strategy to train a binary classifier to predict gene-disease associations. The classifier performance are validated using outdated and novel gene-disease association for training and evaluation, respectively. Finally, we show that MultiXrank scores can be used to compute diffusion profiles and use them as disease signatures. We computed the diffusion profiles of more than 100 immune diseases using a multilayer network that includes cell-type specific genomic information. The clustering of the immune disease diffusion profiles reveals shared shared phenotypic characteristics. CONCLUSION Overall, we illustrate here diverse applications of MultiXrank to showcase its versatility. We expect that this can lead to further and broader bioinformatics applications.
Collapse
Affiliation(s)
- Anthony Baptista
- School of Mathematical Sciences, Queen Mary University of London, London, UK.
- The Alan Turing Institute, London, UK.
| | | | - Anaïs Baudot
- INSERM, MMG, Turing Center for Living Systems, Aix-Marseille Univ, Marseille, France.
- Barcelona Supercomputing Center, Barcelona, Spain.
| |
Collapse
|
9
|
Wojtara MS, Kang J, Zaman M. Congenital Telangiectatic Erythema: Scoping Review. JMIR DERMATOLOGY 2023; 6:e48413. [PMID: 37796556 PMCID: PMC10587801 DOI: 10.2196/48413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/19/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Congenital telangiectatic erythema (CTE), also known as Bloom syndrome, is a rare autosomal recessive disorder characterized by below-average height, a narrow face, a red skin rash occurring on sun-exposed areas of the body, and an increased risk of cancer. CTE is one of many genodermatoses and photodermatoses associated with defects in DNA repair. CTE is caused by a mutation occurring in the BLM gene, which causes abnormal breaks in chromosomes. OBJECTIVE We aimed to analyze the existing literature on CTE to provide additional insight into its heredity, the spectrum of clinical presentations, and the management of this disorder. In addition, the gaps in current research and the use of artificial intelligence to streamline clinical diagnosis and the management of CTE are outlined. METHODS A literature search was conducted on PubMed, DOAJ, and Scopus using search terms such as "congenital telangiectatic erythema," "bloom syndrome," and "bloom-torre-machacek." Due to limited current literature, studies published from January 2000 to January 2023 were considered for this review. A total of 49 sources from the literature were analyzed. RESULTS Through this scoping review, the researchers were able to identify several publications focusing on Bloom syndrome. Some common subject areas included the heredity of CTE, clinical presentations of CTE, and management of CTE. In addition, the literature on rare diseases shows the potential advancements in understanding and treatment with artificial intelligence. Future studies should address the causes of heterogeneity in presentation and examine potential therapeutic candidates for CTE and similarly presenting syndromes. CONCLUSIONS This review illuminated current advances in potential molecular targets or causative pathways in the development of CTE as well as clinical features including erythema, increased cancer risk, and growth abnormalities. Future studies should continue to explore innovations in this space, especially in regard to the use of artificial intelligence, including machine learning and deep learning, for the diagnosis and clinical management of rare diseases such as CTE.
Collapse
Affiliation(s)
- Magda Sara Wojtara
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jayne Kang
- Department of Health Sciences, Queen's University, Kingston, ON, Canada
| | - Mohammed Zaman
- Department of Biology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
10
|
Drbohlavová T, Argalácsová S, Soukupová J, Vočka M. Germline Pathogenic Variants in Squamous Cell Carcinoma of the Head and Neck. Folia Biol (Praha) 2023; 69:107-115. [PMID: 38410968 DOI: 10.14712/fb2023069040107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) presents a significant global health problem with variable geographic distribution and risk factors, including tobacco and alcohol abuse, human papillomavirus infections, and genetic predisposition. While the majority of cases are sporadic, several well-defined hereditary syndromes have been associated with a higher risk of developing HNSCC including Li-Fraumeni syndrome, Fanconi anaemia, Bloom syndrome, familial atypical multiple mole melanoma, and dyskeratosis congenita. There is also evidence of familial clusters of HNSCC, suggesting a genetic component in the development of the disease. Germ-line genetic testing in HNSCC using next-generation sequencing has revealed a wide range of germline variants, some of which were not anticipated based on standard guidelines. These variants may influence treatment decisions and have the potential to be targeted with precision medicine in the future. Despite these advances, routine germline genetic testing for HNSCC is not currently recommended and remains reserved for HNSCC cases with early onset or strong family cancer history. However, the increasing availability of germline genetic testing warrants development of more comprehensive and standardized testing protocols. Germline genetic testing also has the potential to influence precision-guided treatment in HNSCC patients carrying germline pathogenic variants.
Collapse
Affiliation(s)
- Tereza Drbohlavová
- Institute of Radiation Oncology, First Faculty of Medicine, Charles University and Bulovka University Hospital, Prague, Czech Republic
| | - Soňa Argalácsová
- Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| | - Jana Soukupová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Michal Vočka
- Department of Oncology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| |
Collapse
|
11
|
Combined-modality treatment for locally advanced cervical cancer in a woman with Bloom-like syndrome: A case report and review of the literature. Strahlenther Onkol 2023; 199:102-105. [PMID: 35931890 DOI: 10.1007/s00066-022-01981-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/10/2022] [Indexed: 01/18/2023]
Abstract
We report the case of a 46-year-old woman with Bloom-like syndrome affected with locally advanced cervical cancer. She was treated with induction chemotherapy and radical radiation therapy concurrent with chemotherapy (carboplatin and paclitaxel). She was able to complete treatment, but grade III toxicities were observed. The limited relevant literature is presented. We conclude that the management of patients with DNA repair deficiency is challenging for the team in charge because of the potentially high sensitivity to treatment and the lack of clear recommendations in the literature. The main objective remains to deliver the optimal treatment while reducing toxicities.
Collapse
|
12
|
Overview of familial syndromes with increased skin malignancies. Arch Dermatol Res 2022; 315:707-727. [PMID: 36342513 DOI: 10.1007/s00403-022-02447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
The vast majority of skin cancers can be classified into two main types: melanoma and keratinocyte carcinomas. The most common keratinocyte carcinomas include basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Multiple familial syndromes have been identified that can increase the risk of developing SCC, BCC, and/or melanoma. The major syndromes include oculocutaneous albinism for SCC, basal cell nevus syndrome for BCC, familial atypical multiple mole-melanoma syndrome, and hereditary breast and ovarian cancer syndrome for melanoma. In addition, familial syndromes that can predispose individuals to all three major skin cancers include xeroderma pigmentosum and Li-Fraumeni syndrome. This review highlights the epidemiology, risk factors, pathogenesis, and etiology of the major and minor syndromes to better identify and manage these conditions. Current investigational trials in genomic medicine are making their way in revolutionizing the clinical diagnosis of these familial syndromes for earlier preventative measures and improvement of long-term prognosis in these patients.
Collapse
|
13
|
Kahremany S, Hofmann L, Gruzman A, Dinkova-Kostova AT, Cohen G. NRF2 in dermatological disorders: Pharmacological activation for protection against cutaneous photodamage and photodermatosis. Free Radic Biol Med 2022; 188:262-276. [PMID: 35753587 PMCID: PMC9350913 DOI: 10.1016/j.freeradbiomed.2022.06.238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023]
Abstract
The skin barrier and its endogenous protective mechanisms cope daily with exogenous stressors, of which ultraviolet radiation (UVR) poses an imminent danger. Although the skin is able to reduce the potential damage, there is a need for comprehensive strategies for protection. This is particularly important when developing pharmacological approaches to protect against photocarcinogenesis. Activation of NRF2 has the potential to provide comprehensive and long-lasting protection due to the upregulation of numerous cytoprotective downstream effector proteins that can counteract the damaging effects of UVR. This is also applicable to photodermatosis conditions that exacerbate the damage caused by UVR. This review describes the alterations caused by UVR in normal skin and photosensitive disorders, and provides evidence to support the development of NRF2 activators as pharmacological treatments. Key natural and synthetic activators with photoprotective properties are summarized. Lastly, the gap in knowledge in research associated with photodermatosis conditions is highlighted.
Collapse
Affiliation(s)
- Shirin Kahremany
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel; The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel
| | - Lukas Hofmann
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Arie Gruzman
- Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Guy Cohen
- The Skin Research Institute, The Dead Sea and Arava Science Center, Masada, 86910, Israel; Ben-Gurion University of the Negev, Eilat Campus, Eilat, 8855630, Israel.
| |
Collapse
|
14
|
Clavere NG, Alqallaf A, Rostron KA, Parnell A, Mitchell R, Patel K, Boateng SY. Inhibition of activin A receptor signalling attenuates age-related pathological cardiac remodelling. Dis Model Mech 2022; 15:275323. [PMID: 35380160 PMCID: PMC9118092 DOI: 10.1242/dmm.049424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
In the heart, ageing is associated with DNA damage, oxidative stress, fibrosis and activation of the activin signalling pathway, leading to cardiac dysfunction. The cardiac effects of activin signalling blockade in progeria are unknown. This study investigated the cardiac effects of progeria induced by attenuated levels of Ercc1, which is required for DNA excision and repair, and the impact of activin signalling blockade using a soluble activin receptor type IIB (sActRIIB). DNA damage and oxidative stress were significantly increased in Ercc1Δ/− hearts, but were reduced by sActRIIB treatment. sActRIIB treatment improved cardiac systolic function and induced cardiomyocyte hypertrophy in Ercc1Δ/− hearts. RNA-sequencing analysis showed that in Ercc1Δ/− hearts, there was an increase in pro-oxidant and a decrease in antioxidant gene expression, whereas sActRIIB treatment reversed this effect. Ercc1Δ/− hearts also expressed higher levels of anti-hypertrophic genes and decreased levels of pro-hypertrophic ones, which were also reversed by sActRIIB treatment. These results show for the first time that inhibition of activin A receptor signalling attenuates cardiac dysfunction, pathological tissue remodelling and gene expression in Ercc1-deficient mice and presents a potentially novel therapeutic target for heart diseases. Summary: Attenuated DNA repair is associated with pathological cardiac remodelling and gene expression. Much of this phenotype is attenuated by inhibition of the activin signalling pathway using soluble activin receptor treatment.
Collapse
Affiliation(s)
- Nicolas G Clavere
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Ali Alqallaf
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Kerry A Rostron
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Andrew Parnell
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Robert Mitchell
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Ketan Patel
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Samuel Y Boateng
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| |
Collapse
|
15
|
Xue C, Salunkhe SJ, Tomimatsu N, Kawale AS, Kwon Y, Burma S, Sung P, Greene EC. Bloom helicase mediates formation of large single-stranded DNA loops during DNA end processing. Nat Commun 2022; 13:2248. [PMID: 35473934 PMCID: PMC9042962 DOI: 10.1038/s41467-022-29937-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/14/2022] [Indexed: 01/27/2023] Open
Abstract
Bloom syndrome (BS) is associated with a profoundly increased cancer risk and is caused by mutations in the Bloom helicase (BLM). BLM is involved in the nucleolytic processing of the ends of DNA double-strand breaks (DSBs), to yield long 3' ssDNA tails that serve as the substrate for break repair by homologous recombination (HR). Here, we use single-molecule imaging to demonstrate that BLM mediates formation of large ssDNA loops during DNA end processing. A BLM mutant lacking the N-terminal domain (NTD) retains vigorous in vitro end processing activity but fails to generate ssDNA loops. This same mutant supports DSB end processing in cells, however, these cells do not form RAD51 DNA repair foci and the processed DSBs are channeled into synthesis-dependent strand annealing (SSA) instead of HR-mediated repair, consistent with a defect in RAD51 filament formation. Together, our results provide insights into BLM functions during homologous recombination.
Collapse
Affiliation(s)
- Chaoyou Xue
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Sameer J Salunkhe
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Nozomi Tomimatsu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ajinkya S Kawale
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- The Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
16
|
Gorsi B, Hernandez E, Moore MB, Moriwaki M, Chow CY, Coelho E, Taylor E, Lu C, Walker A, Touraine P, Nelson LM, Cooper AR, Mardis ER, Rajkovic A, Yandell M, Welt CK. Causal and Candidate Gene Variants in a Large Cohort of Women With Primary Ovarian Insufficiency. J Clin Endocrinol Metab 2022; 107:685-714. [PMID: 34718612 PMCID: PMC9006976 DOI: 10.1210/clinem/dgab775] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT A genetic etiology likely accounts for the majority of unexplained primary ovarian insufficiency (POI). OBJECTIVE We hypothesized that heterozygous rare variants and variants in enhanced categories are associated with POI. DESIGN The study was an observational study. SETTING Subjects were recruited at academic institutions. PATIENTS Subjects from Boston (n = 98), the National Institutes of Health and Washington University (n = 98), Pittsburgh (n = 20), Italy (n = 43), and France (n = 32) were diagnosed with POI (amenorrhea with an elevated follicle-stimulating hormone level). Controls were recruited for health in old age or were from the 1000 Genomes Project (total n = 233). INTERVENTION We performed whole exome sequencing (WES), and data were analyzed using a rare variant scoring method and a Bayes factor-based framework for identifying genes harboring pathogenic variants. We performed functional studies on identified genes that were not previously implicated in POI in a D. melanogaster model. MAIN OUTCOME Genes with rare pathogenic variants and gene sets with increased burden of deleterious variants were identified. RESULTS Candidate heterozygous variants were identified in known genes and genes with functional evidence. Gene sets with increased burden of deleterious alleles included the categories transcription and translation, DNA damage and repair, meiosis and cell division. Variants were found in novel genes from the enhanced categories. Functional evidence supported 7 new risk genes for POI (USP36, VCP, WDR33, PIWIL3, NPM2, LLGL1, and BOD1L1). CONCLUSIONS Candidate causative variants were identified through WES in women with POI. Aggregating clinical data and genetic risk with a categorical approach may expand the genetic architecture of heterozygous rare gene variants causing risk for POI.
Collapse
Affiliation(s)
- Bushra Gorsi
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Edgar Hernandez
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Marvin Barry Moore
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Mika Moriwaki
- Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, UT, USA
| | - Clement Y Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Emily Coelho
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Elaine Taylor
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Claire Lu
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Amanda Walker
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Philippe Touraine
- Sorbonne Universite, Hôpital Universitaire Pitié Salpêtrière-Charles Foix, Service d’Endocrinologie et Médecine de la Reproduction, Centre de Maladies Endocriniennes Rares de la Croissance et du Développement, Centre de Pathologies Gynécologiques Rares, Paris, France
| | | | | | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Ohio State University College of Medicine, Columbus, OH, USA
| | - Aleksander Rajkovic
- Department of Pathology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Mark Yandell
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Corrine K Welt
- Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
17
|
Vines AJ, Cox K, Leland BA, King MC. Homology-directed repair involves multiple strand invasion cycles in fission yeast. Mol Biol Cell 2022; 33:ar30. [PMID: 35080989 PMCID: PMC9250353 DOI: 10.1091/mbc.e20-07-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Homology-directed repair of DNA double-strand breaks (DSBs) represents a highly faithful pathway. Non–crossover repair dominates in mitotically growing cells, likely through a preference for synthesis-dependent strand annealing (SDSA). How homology-directed repair mechanism choice is orchestrated in time and space is not well understood. Here, we develop a microscopy-based assay in living fission yeast to determine the dynamics and kinetics of an engineered, site-specific interhomologue repair event. We observe highly efficient homology search and homology-directed repair in this system. Surprisingly, the initial distance between the DSB and the donor sequence does not correlate with the duration of repair. Instead, we observe that repair often involves multiple site-specific and Rad51-dependent colocalization events between the DSB and donor sequence. Upon loss of the RecQ helicase Rqh1 (BLM in humans) we observe rapid repair possibly involving a single strand invasion event, suggesting that multiple strand invasion cycles antagonized by Rqh1 could reflect ongoing SDSA. However, failure to colocalize with the donor sequence and execute repair is also more likely in rqh1Δ cells, possibly reflecting erroneous strand invasion. This work has implications for the molecular etiology of Bloom syndrome, caused by mutations in BLM and characterized by aberrant sister chromatid crossovers and inefficient repair.
Collapse
Affiliation(s)
- Amanda J Vines
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA, 06520
| | - Kenneth Cox
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA, 06520
| | - Bryan A Leland
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA, 06520
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA, 06520
| |
Collapse
|
18
|
Rieckher M, Garinis GA, Schumacher B. Molecular pathology of rare progeroid diseases. Trends Mol Med 2021; 27:907-922. [PMID: 34272172 DOI: 10.1016/j.molmed.2021.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
Progeroid syndromes (PSs) are characterized by the premature onset of age-related pathologies. The genetic mutations underlying PSs are functionally linked to genome maintenance and repair, supporting the causative role of DNA damage accumulation in aging. Recent advances from studies in animal models of PSs have provided new insight into the role of DNA repair mechanisms in human disease and the physiological adaptations to accumulating DNA damage during aging. The molecular pathology of PSs is reminiscent of the natural aging process, highlighting the relevance for a wide range of age-related diseases. Recent progress has led to the development of novel therapeutic strategies against age-related diseases that are relevant to rare diseases as well as the general aging population.
Collapse
Affiliation(s)
- Matthias Rieckher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, GR70013, Heraklion, Crete, Greece; Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany.
| |
Collapse
|
19
|
Szmyd B, Mlynarski W, Pastorczak A. Genetic predisposition to lymphomas: Overview of rare syndromes and inherited familial variants. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108386. [PMID: 34893151 DOI: 10.1016/j.mrrev.2021.108386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 01/19/2023]
Abstract
Approximately 10 % of malignancies occur in carriers of germline mutations predisposing to cancer. A high risk of developing lymphomas has been noted in many primary immunodeficiencies, including DNA repair disorders. Moreover, implementation of next-generation sequencing has recently enabled to uncover rare genetic variants predisposing patients to lymphoid neoplasms. Some patients harboring inherited predisposition to lymphomas require dedicated clinical management, which will contribute to effective cancer treatment and to the prevention of potential severe toxicities and secondary malignancies. In line with that, our review summarizes the natural history of lymphoid tumors developing on different germline genetic backgrounds and discusses the progress that has been made toward successfully treating these malignancies.
Collapse
Affiliation(s)
- Bartosz Szmyd
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
20
|
Piedade KC, Spencer H, Persani L, Nelson LM. Optimizing Fertility in Primary Ovarian Insufficiency: Case Report and Literature Review. Front Genet 2021; 12:676262. [PMID: 34249096 PMCID: PMC8261244 DOI: 10.3389/fgene.2021.676262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Primary ovarian insufficiency (POI) is a clinical spectrum of ovarian dysfunction. Overt POI presents with oligo/amenorrhea and hypergonadotropic hypogonadism before age 40 years. Overt POI involves chronic health problems to include increased morbidity and mortality related to estradiol deficiency and the associated osteoporosis and cardiovascular disease as well as psychological and psychiatric disorders related to the loss of reproductive hormones and infertility. Presently, with standard clinical testing, a mechanism for Overt POI can only be identified in about 10% of cases. Now discovery of new mechanisms permits an etiology to be identified in a research setting in 25-30% of overt cases. The most common genetic cause of Overt POI is premutation in FMR1. The associated infertility is life altering. Oocyte donation is effective, although many women prefer to conceive with their own ova. Surprisingly, the majority who have Overt POI still have detectable ovarian follicles (70%). The major mechanism of follicle dysfunction in Overt POI has been histologically defined by a prospective NIH study: inappropriate follicle luteinization due to the tonically elevated serum LH levels. A trial of physiologic hormone replacement therapy, clinically proven to suppress the elevated LH levels in these women, may improve follicle function and increase the chance of ovulation. Here, we report the case of a woman with Overt POI diagnosed at age 35 years. To attempt pregnancy, she elected a trial of intrauterine insemination (IUI) in conjunction with follicle monitoring and physiologic hormone replacement therapy. She conceived on the eighth cycle of treatment and delivered a healthy baby. Our report calls for a concerted effort to define the best methods by which to optimize fertility for women who have POI.
Collapse
Affiliation(s)
| | - Hillary Spencer
- Vanderbilt University Medical Center, Nashville, TN, United States
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano, Milan, Italy
| | | |
Collapse
|
21
|
Costagliola G, Consolini R. Lymphadenopathy at the crossroad between immunodeficiency and autoinflammation: An intriguing challenge. Clin Exp Immunol 2021; 205:288-305. [PMID: 34008169 PMCID: PMC8374228 DOI: 10.1111/cei.13620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/11/2022] Open
Abstract
Lymphadenopathies can be part of the clinical spectrum of several primary immunodeficiencies, including diseases with immune dysregulation and autoinflammatory disorders, as the clinical expression of benign polyclonal lymphoproliferation, granulomatous disease or lymphoid malignancy. Lymphadenopathy poses a significant diagnostic dilemma when it represents the first sign of a disorder of the immune system, leading to a consequently delayed diagnosis. Additionally, the finding of lymphadenopathy in a patient with diagnosed immunodeficiency raises the question of the differential diagnosis between benign lymphoproliferation and malignancies. Lymphadenopathies are evidenced in 15–20% of the patients with common variable immunodeficiency, while in other antibody deficiencies the prevalence is lower. They are also evidenced in different combined immunodeficiency disorders, including Omenn syndrome, which presents in the first months of life. Interestingly, in the activated phosphoinositide 3‐kinase delta syndrome, autoimmune lymphoproliferative syndrome, Epstein–Barr virus (EBV)‐related lymphoproliferative disorders and regulatory T cell disorders, lymphadenopathy is one of the leading signs of the entire clinical picture. Among autoinflammatory diseases, the highest prevalence of lymphadenopathies is observed in patients with periodic fever, aphthous stomatitis, pharyngitis, and cervical adenitis (PFAPA) and hyper‐immunoglobulin (Ig)D syndrome. The mechanisms underlying lymphoproliferation in the different disorders of the immune system are multiple and not completely elucidated. The advances in genetic techniques provide the opportunity of identifying new monogenic disorders, allowing genotype–phenotype correlations to be made and to provide adequate follow‐up and treatment in the single diseases. In this work, we provide an overview of the most relevant immune disorders associated with lymphadenopathy, focusing on their diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Giorgio Costagliola
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rita Consolini
- Section of Clinical and Laboratory Immunology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Huang C, Guo T, Qin Y. Meiotic Recombination Defects and Premature Ovarian Insufficiency. Front Cell Dev Biol 2021; 9:652407. [PMID: 33763429 PMCID: PMC7982532 DOI: 10.3389/fcell.2021.652407] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Premature ovarian insufficiency (POI) is the depletion of ovarian function before 40 years of age due to insufficient oocyte formation or accelerated follicle atresia. Approximately 1–5% of women below 40 years old are affected by POI. The etiology of POI is heterogeneous, including genetic disorders, autoimmune diseases, infection, iatrogenic factors, and environmental toxins. Genetic factors account for 20–25% of patients. However, more than half of the patients were idiopathic. With the widespread application of next-generation sequencing (NGS), the genetic spectrum of POI has been expanded, especially the latest identification in meiosis and DNA repair-related genes. During meiotic prophase I, the key processes include DNA double-strand break (DSB) formation and subsequent homologous recombination (HR), which are essential for chromosome segregation at the first meiotic division and genome diversity of oocytes. Many animal models with defective meiotic recombination present with meiotic arrest, DSB accumulation, and oocyte apoptosis, which are similar to human POI phenotype. In the article, based on different stages of meiotic recombination, including DSB formation, DSB end processing, single-strand invasion, intermediate processing, recombination, and resolution and essential proteins involved in synaptonemal complex (SC), cohesion complex, and fanconi anemia (FA) pathway, we reviewed the individual gene mutations identified in POI patients and the potential candidate genes for POI pathogenesis, which will shed new light on the genetic architecture of POI and facilitate risk prediction, ovarian protection, and early intervention for POI women.
Collapse
Affiliation(s)
- Chengzi Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Ting Guo
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| |
Collapse
|
23
|
Xue C, Molnarova L, Steinfeld JB, Zhao W, Ma C, Spirek M, Kaniecki K, Kwon Y, Beláň O, Krejci K, Boulton S, Sung P, Greene EC, Krejci L. Single-molecule visualization of human RECQ5 interactions with single-stranded DNA recombination intermediates. Nucleic Acids Res 2021; 49:285-305. [PMID: 33332547 PMCID: PMC7797033 DOI: 10.1093/nar/gkaa1184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/03/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
RECQ5 is one of five RecQ helicases found in humans and is thought to participate in homologous DNA recombination by acting as a negative regulator of the recombinase protein RAD51. Here, we use kinetic and single molecule imaging methods to monitor RECQ5 behavior on various nucleoprotein complexes. Our data demonstrate that RECQ5 can act as an ATP-dependent single-stranded DNA (ssDNA) motor protein and can translocate on ssDNA that is bound by replication protein A (RPA). RECQ5 can also translocate on RAD51-coated ssDNA and readily dismantles RAD51-ssDNA filaments. RECQ5 interacts with RAD51 through protein-protein contacts, and disruption of this interface through a RECQ5-F666A mutation reduces translocation velocity by ∼50%. However, RECQ5 readily removes the ATP hydrolysis-deficient mutant RAD51-K133R from ssDNA, suggesting that filament disruption is not coupled to the RAD51 ATP hydrolysis cycle. RECQ5 also readily removes RAD51-I287T, a RAD51 mutant with enhanced ssDNA-binding activity, from ssDNA. Surprisingly, RECQ5 can bind to double-stranded DNA (dsDNA), but it is unable to translocate. Similarly, RECQ5 cannot dismantle RAD51-bound heteroduplex joint molecules. Our results suggest that the roles of RECQ5 in genome maintenance may be regulated in part at the level of substrate specificity.
Collapse
Affiliation(s)
- Chaoyou Xue
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Lucia Molnarova
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
| | - Justin B Steinfeld
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Chujian Ma
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Mario Spirek
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
| | - Kyle Kaniecki
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Ondrej Beláň
- DSB Repair Metabolism Lab, The Francis Crick Institute, Midland Road, London NW1 1AT, UK
| | - Katerina Krejci
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno 65691, Czech Republic
| | - Simon J Boulton
- DSB Repair Metabolism Lab, The Francis Crick Institute, Midland Road, London NW1 1AT, UK
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Lumir Krejci
- Department of Biology, Masaryk University, Brno 62500, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Brno 65691, Czech Republic
- National Centre for Biomolecular Research, Masaryk, Brno 62500, Czech Republic
| |
Collapse
|
24
|
Nasser NJ, Klein J, Agbarya A. Markers of Toxicity and Response to Radiation Therapy in Patients With Prostate Cancer. Adv Radiat Oncol 2021; 6:100603. [PMID: 33490732 PMCID: PMC7811126 DOI: 10.1016/j.adro.2020.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 10/05/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
The main treatment modalities for localized prostate cancer are surgery and radiation. Surgery removes the whole prostate gland, whereas with radiation therapy the irradiated prostate remains within the patient's body. Biomarkers specific to the prostate gland should become undetectable after surgery, but this is not the case when radiation therapy is used, as residual prostate cells may still be metabolically active. Here, we review the role of tumor markers of toxicity and response to radiation therapy in patients with prostate cancer, including prostate specific antigen, human kallikrein 2, osteopontin, prostate cancer associated 3, citrulline, and others.
Collapse
Affiliation(s)
- Nicola J. Nasser
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Jonathan Klein
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Abed Agbarya
- Institute of Oncology, Bnai Zion Medical Center, Haifa, Israel
| |
Collapse
|
25
|
Tang Q, Kamble P, Çağlayan M. DNA ligase I variants fail in the ligation of mutagenic repair intermediates with mismatches and oxidative DNA damage. Mutagenesis 2020; 35:391-404. [PMID: 32914844 PMCID: PMC7846189 DOI: 10.1093/mutage/geaa023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/10/2020] [Indexed: 01/26/2023] Open
Abstract
DNA ligase I (LIG1) joins DNA strand breaks during DNA replication and repair transactions and contributes to genome integrity. The mutations (P529L, E566K, R641L and R771W) in LIG1 gene are described in patients with LIG1-deficiency syndrome that exhibit immunodeficiency. LIG1 senses 3'-DNA ends with a mismatch or oxidative DNA base inserted by a repair DNA polymerase. However, the ligation efficiency of the LIG1 variants for DNA polymerase-promoted mutagenesis products with 3'-DNA mismatches or 8-oxo-2'-deoxyguanosine (8-oxodG) remains undefined. Here, we report that R641L and R771W fail in the ligation of nicked DNA with 3'-8-oxodG, leading to an accumulation of 5'-AMP-DNA intermediates in vitro. Moreover, we found that the presence of all possible 12 non-canonical base pairs variously impacts the ligation efficiency by P529L and R771W depending on the architecture at the DNA end, whereas E566K exhibits no activity against all substrates tested. Our results contribute to the understanding of the substrate specificity and mismatch discrimination of LIG1 for mutagenic repair intermediates and the effect of non-synonymous mutations on ligase fidelity.
Collapse
Affiliation(s)
- Qun Tang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Pradnya Kamble
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
26
|
Jafari F, Javdansirat S, Sanaie S, Naseri A, Shamekh A, Rostamzadeh D, Dolati S. Osteosarcoma: A comprehensive review of management and treatment strategies. Ann Diagn Pathol 2020; 49:151654. [PMID: 33130384 DOI: 10.1016/j.anndiagpath.2020.151654] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/09/2020] [Accepted: 10/20/2020] [Indexed: 01/25/2023]
Abstract
Osteosarcoma, a bone cancer usually seen in children and young adults, is generally a high-grade malignancy presented by extreme metastases to the lungs. Osteosarcoma has a tendency for appearing in bones with rapid growth rate. The etiology of osteosarcoma is multifaceted and poorly understood. A molecular consideration of this disease will lead to a directed tumor treatment. The present treatment for osteosarcoma comprises of an arrangement of systemic chemotherapy and wide surgical resection. Survival rate is increased by the progress of destructive systemic chemotherapies. So, the development of new treatment approaches for metastatic osteosarcoma is essential. Immunomodulation has been used in clinical settings. Through targeting surface antigens expressed on tumor cells, particular antibodies and exploitation of cellular immunotherapy against sarcomas have been confirmed to be effective as cancer therapeutics. In this article, we have reviewed epidemiology, etiology, pathogenesis, diagnosis, and treatment of osteosarcoma and we have focused on different methods of immunotherapy including vaccines, cell-based immunotherapy, cytokines, and monoclonal antibodies.
Collapse
Affiliation(s)
- Farzaneh Jafari
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Javdansirat
- Clinical Research development unit Center, Beheshti Hospital, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sarvin Sanaie
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Naseri
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Rostamzadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
27
|
Kleinwuchssyndrome – potenziell lebensbedrohliche Erkrankungen. Monatsschr Kinderheilkd 2020. [DOI: 10.1007/s00112-020-01030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Zusammenfassung
Hintergrund
Es gibt viele Ursachen für einen Kleinwuchs. Kleinwuchs in Kombination mit einer intrauterinen Wachstumsretardierung (IUGR), einer Entwicklungsverzögerung und/oder ungewöhnlichen Stigmata sollte immer auch an eine syndromale Ursache denken lassen.
Fragestellung
Diese Arbeit soll für Kleinwuchssyndrome sensibilisieren, deren Diagnose aufgrund der potenziell lebensbedrohlichen Folgen möglichst frühzeitig gestellt werden sollte.
Material und Methoden
Die vorliegende Arbeit wurde auf Basis klinikinterner Fallberichte vor dem Hintergrund der aktuellen Literatur erstellt.
Ergebnisse
Das PTEN-Hamartom-Tumor-Syndrom (PHTS), das Bloom-Syndrom (BS), der mikrozephale osteodysplastische primordiale Kleinwuchs Typ II (MOPD-II-Syndrom) sowie das Ligase-IV-Syndrom (Lig4-Syndrom) sind seltene Kleinwuchssyndrome mit potenziell letalem Ausgang. Gemeinsame Merkmale liegen in einer Abweichung des Kopfumfangs (KU) und einer Entwicklungsverzögerung. Die Verdachtsdiagnose wird molekulargenetisch gesichert. Die Behandlung erfolgt in erster Linie symptomorientiert, für das PHTS und das Ligase-IV-Syndrom existieren darüber hinaus bereits kausale Therapieansätze. Für alle Syndrome gibt es Empfehlungen im Hinblick auf gezielte Vorsorgeuntersuchungen.
Schlussfolgerung
Bei entsprechenden Hinweisen auf einen syndromalen Kleinwuchs sollte zügig eine molekulargenetisch gestützte Diagnostik erfolgen, um rechtzeitig geeignete Therapieoptionen und Vorsorgeprogramme initiieren zu können.
Collapse
|
28
|
Alzahrani FA, Ahmed F, Sharma M, Rehan M, Mahfuz M, Baeshen MN, Hawsawi Y, Almatrafi A, Alsagaby SA, Kamal MA, Warsi MK, Choudhry H, Jamal MS. Investigating the pathogenic SNPs in BLM helicase and their biological consequences by computational approach. Sci Rep 2020; 10:12377. [PMID: 32704157 PMCID: PMC7378827 DOI: 10.1038/s41598-020-69033-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
The BLM helicase protein plays a vital role in DNA replication and the maintenance of genomic integrity. Variation in the BLM helicase gene resulted in defects in the DNA repair mechanism and was reported to be associated with Bloom syndrome (BS) and cancer. Despite extensive investigation of helicase proteins in humans, no attempt has previously been made to comprehensively analyse the single nucleotide polymorphism (SNPs) of the BLM gene. In this study, a comprehensive analysis of SNPs on the BLM gene was performed to identify, characterize and validate the pathogenic SNPs using computational approaches. We obtained SNP data from the dbSNP database version 150 and mapped these data to the genomic coordinates of the "NM_000057.3" transcript expressing BLM helicase (P54132). There were 607 SNPs mapped to missense, 29 SNPs mapped to nonsense, and 19 SNPs mapped to 3'-UTR regions. Initially, we used many consensus tools of SIFT, PROVEAN, Condel, and PolyPhen-2, which together increased the accuracy of prediction and identified 18 highly pathogenic non-synonymous SNPs (nsSNPs) out of 607 SNPs. Subsequently, these 18 high-confidence pathogenic nsSNPs were analysed for BLM protein stability, structure-function relationships and disease associations using various bioinformatics tools. These 18 mutants of the BLM protein along with the native protein were further investigated using molecular dynamics simulations to examine the structural consequences of the mutations, which might reveal their malfunction and contribution to disease. In addition, 28 SNPs were predicted as "stop gained" nonsense SNPs and one SNP was predicted as "start lost". Two SNPs in the 3'UTR were found to abolish miRNA binding and thus may enhance the expression of BLM. Interestingly, we found that BLM mRNA overexpression is associated with different types of cancers. Further investigation showed that the dysregulation of BLM is associated with poor overall survival (OS) for lung and gastric cancer patients and hence led to the conclusion that BLM has the potential to be used as an important prognostic marker for the detection of lung and gastric cancer.
Collapse
Affiliation(s)
- Faisal A Alzahrani
- Department of Biochemistry, Faculty of Science, Stem Cells Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - Firoz Ahmed
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia.
- University of Jeddah Centre for Scientific and Medical Research (UJ-CSMR), University of Jeddah, Jeddah, 21589, Saudi Arabia.
| | - Monika Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Mohd Rehan
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maryam Mahfuz
- Department of Computer Science, Jamia Millia Islamia, New Delhi, Delhi, India
| | - Mohammed N Baeshen
- Department of Biology, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Yousef Hawsawi
- Department of Genetics, Research Center, King Faisal Specialist Hospital, and Research Center, MBC-03, PO Box 3354, Riyadh, 11211, Saudi Arabia
| | - Ahmed Almatrafi
- Department of Biology, Faculty of Science, University of Taibah, Medinah, Saudi Arabia
| | - Suliman Abdallah Alsagaby
- Department of Medical Laboratories, Central Biosciences Research Laboratories, College of Science in Al Zulfi, Majmaah University, Al Majma'ah, Saudi Arabia
| | - Mohammad Azhar Kamal
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
- University of Jeddah Centre for Scientific and Medical Research (UJ-CSMR), University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Mohiuddin Khan Warsi
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
- University of Jeddah Centre for Scientific and Medical Research (UJ-CSMR), University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Sarwar Jamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
29
|
Trizuljak J, Petruchová T, Blaháková I, Vrzalová Z, Hořínová V, Doubková M, Michalka J, Mayer J, Pospíšilová Š, Doubek M. Diagnosis of Bloom Syndrome in a Patient with Short Stature, Recurrence of Malignant Lymphoma, and Consanguineous Origin. Mol Syndromol 2020; 11:73-82. [PMID: 32655338 DOI: 10.1159/000507006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 11/19/2022] Open
Abstract
Bloom syndrome is an autosomal recessive disorder characterized by prenatal and postnatal growth deficiency, photosensitive skin changes, immune deficiency, insulin resistance, and a greatly increased risk of early-onset cancer and development of multiple malignancies. Loss-of-function variants of the BLM gene, which codes for a RecQ helicase, cause Bloom syndrome. We report a consanguineous family, with 2 siblings showing clinical signs of suspected chromosome breakage disorder. One of them developed recurrent malignant lymphoma during lifetime. We performed next-generation sequencing analysis, focusing on cancer predisposition syndromes. We identified a homozygous pathogenic nonsense variant c.1642C>T (p.Gln548*) in the BLM gene in the proband, associated with Bloom syndrome. Sanger sequencing validated the presence of a homozygous pathogenic variant in the proband and also in the brother with short stature. In this article, we will focus on the clinical presentation of the syndrome in this particular family as well as the characteristics of malignancies found in the proband.
Collapse
Affiliation(s)
- Jakub Trizuljak
- Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Ivona Blaháková
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zuzana Vrzalová
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Věra Hořínová
- Outpatient Ward for Genetics, Hospital Jihlava, Jihlava, Czech Republic
| | - Martina Doubková
- Department of Pulmonary Diseases and Tuberculosis, University Hospital, Brno, Czech Republic
| | - Jozef Michalka
- Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jiří Mayer
- Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Šárka Pospíšilová
- Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, Brno, Czech Republic.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| |
Collapse
|
30
|
Perz A, Aizman L, Lukowiak T, Etzkorn JR. Cells to Surgery Quiz: July 2020. J Invest Dermatol 2020. [DOI: 10.1016/j.jid.2020.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Xue C, Daley JM, Xue X, Steinfeld J, Kwon Y, Sung P, Greene EC. Single-molecule visualization of human BLM helicase as it acts upon double- and single-stranded DNA substrates. Nucleic Acids Res 2019; 47:11225-11237. [PMID: 31544923 PMCID: PMC6868385 DOI: 10.1093/nar/gkz810] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 11/12/2022] Open
Abstract
Bloom helicase (BLM) and its orthologs are essential for the maintenance of genome integrity. BLM defects represent the underlying cause of Bloom Syndrome, a rare genetic disorder that is marked by strong cancer predisposition. BLM deficient cells accumulate extensive chromosomal aberrations stemming from dysfunctions in homologous recombination (HR). BLM participates in several HR stages and helps dismantle potentially harmful HR intermediates. However, much remains to be learned about the molecular mechanisms of these BLM-mediated regulatory effects. Here, we use DNA curtains to directly visualize the activity of BLM helicase on single molecules of DNA. Our data show that BLM is a robust helicase capable of rapidly (∼70-80 base pairs per second) unwinding extensive tracts (∼8-10 kilobases) of double-stranded DNA (dsDNA). Importantly, we find no evidence for BLM activity on single-stranded DNA (ssDNA) that is bound by replication protein A (RPA). Likewise, our results show that BLM can neither associate with nor translocate on ssDNA that is bound by the recombinase protein RAD51. Moreover, our data reveal that the presence of RAD51 also blocks BLM translocation on dsDNA substrates. We discuss our findings within the context of potential regulator roles for BLM helicase during DNA replication and repair.
Collapse
Affiliation(s)
- Chaoyou Xue
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - James M Daley
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Xiaoyu Xue
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Justin Steinfeld
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
32
|
Sándor S, Kubinyi E. Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Front Genet 2019; 10:948. [PMID: 31681409 PMCID: PMC6813227 DOI: 10.3389/fgene.2019.00948] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Aging research has experienced a burst of scientific efforts in the last decades as the growing ratio of elderly people has begun to pose an increased burden on the healthcare and pension systems of developed countries. Although many breakthroughs have been reported in understanding the cellular mechanisms of aging, the intrinsic and extrinsic factors that contribute to senescence on higher biological levels are still barely understood. The dog, Canis familiaris, has already served as a valuable model of human physiology and disease. The possible role the dog could play in aging research is still an open question, although utilization of dogs may hold great promises as they naturally develop age-related cognitive decline, with behavioral and histological characteristics very similar to those of humans. In this regard, family dogs may possess unmatched potentials as models for investigations on the complex interactions between environmental, behavioral, and genetic factors that determine the course of aging. In this review, we summarize the known genetic pathways in aging and their relevance in dogs, putting emphasis on the yet barely described nature of certain aging pathways in canines. Reasons for highlighting the dog as a future aging and gerontology model are also discussed, ranging from its unique evolutionary path shared with humans, its social skills, and the fact that family dogs live together with their owners, and are being exposed to the same environmental effects.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | | |
Collapse
|
33
|
Abstract
Cutaneous findings that appear in childhood may be the first sign of a hereditary tumor syndrome. Early detection of genodermatoses allows the patient and at-risk family members to be screened for associated malignancies. This article provides a brief description of the pathogenesis and clinical manifestations of various inherited disorders with skin involvement, along with treatment updates. Advances in molecular-based therapy have spurred development of novel treatment methods for various genodermatoses such as xeroderma pigmentosum (XP) and Gorlin-Goltz syndrome. Further studies are needed to better assess the efficacy of many of these new treatment options.
Collapse
Affiliation(s)
- Ramiz N Hamid
- Department of Dermatology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA.
| | - Zeynep M Akkurt
- Department of Dermatology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
| |
Collapse
|
34
|
Crickard J, Xue C, Wang W, Kwon Y, Sung P, Greene E. The RecQ helicase Sgs1 drives ATP-dependent disruption of Rad51 filaments. Nucleic Acids Res 2019; 47:4694-4706. [PMID: 30916344 PMCID: PMC6511845 DOI: 10.1093/nar/gkz186] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
DNA helicases of the RecQ family are conserved among the three domains of life and play essential roles in genome maintenance. Mutations in several human RecQ helicases lead to diseases that are marked by cancer predisposition. The Saccharomyces cerevisiae RecQ helicase Sgs1 is orthologous to human BLM, defects in which cause the cancer-prone Bloom's Syndrome. Here, we use single-molecule imaging to provide a quantitative mechanistic understanding of Sgs1 activities on single stranded DNA (ssDNA), which is a central intermediate in all aspects of DNA metabolism. We show that Sgs1 acts upon ssDNA bound by either replication protein A (RPA) or the recombinase Rad51. Surprisingly, we find that Sgs1 utilizes a novel motor mechanism for disrupting ssDNA intermediates bound by the recombinase protein Rad51. The ability of Sgs1 to disrupt Rad51-ssDNA filaments may explain some of the defects engendered by RECQ helicase deficiencies in human cells.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Chaoyou Xue
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Weibin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Youngho Kwon
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA
| |
Collapse
|
35
|
Baxter LL, Watkins-Chow DE, Pavan WJ, Loftus SK. A curated gene list for expanding the horizons of pigmentation biology. Pigment Cell Melanoma Res 2019; 32:348-358. [PMID: 30339321 PMCID: PMC10413850 DOI: 10.1111/pcmr.12743] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/01/2018] [Accepted: 09/29/2018] [Indexed: 12/27/2022]
Abstract
Over the past century, studies of human pigmentary disorders along with mouse and zebrafish models have shed light on the many cellular functions associated with visible pigment phenotypes. This has led to numerous genes annotated with the ontology term "pigmentation" in independent human, mouse, and zebrafish databases. Comparisons among these datasets revealed that each is individually incomplete in documenting all genes involved in integument-based pigmentation phenotypes. Additionally, each database contained inherent species-specific biases in data annotation, and the term "pigmentation" did not solely reflect integument pigmentation phenotypes. This review presents a comprehensive, cross-species list of 650 genes involved in pigmentation phenotypes that was compiled with extensive manual curation of genes annotated in OMIM, MGI, ZFIN, and GO. The resulting cross-species list of genes both intrinsic and extrinsic to integument pigment cells provides a valuable tool that can be used to expand our knowledge of complex, pigmentation-associated pathways.
Collapse
Affiliation(s)
- Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
36
|
Armando RG, Mengual Gomez DL, Maggio J, Sanmartin MC, Gomez DE. Telomeropathies: Etiology, diagnosis, treatment and follow-up. Ethical and legal considerations. Clin Genet 2019; 96:3-16. [PMID: 30820928 DOI: 10.1111/cge.13526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/12/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Telomeropathies involve a wide variety of infrequent genetic diseases caused by mutations in the telomerase maintenance mechanism or the DNA damage response (DDR) system. They are considered a family of rare diseases that often share causes, molecular mechanisms and symptoms. Generally, these diseases are not diagnosed until the symptoms are advanced, diminishing the survival time of patients. Although several related syndromes may still be unrecognized this work describes those that are known, highlighting that because they are rare diseases, physicians should be trained in their early diagnosis. The etiology and diagnosis are discussed for each telomeropathy and the treatments when available, along with a new classification of this group of diseases. Ethical and legal issues related to this group of diseases are also considered.
Collapse
Affiliation(s)
- Romina G Armando
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Diego L Mengual Gomez
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Julián Maggio
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María C Sanmartin
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Daniel E Gomez
- Laboratory of Molecular Oncology, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
37
|
Crickard JB, Greene EC. Helicase Mechanisms During Homologous Recombination in Saccharomyces cerevisiae. Annu Rev Biophys 2019; 48:255-273. [PMID: 30857400 DOI: 10.1146/annurev-biophys-052118-115418] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicases are enzymes that move, manage, and manipulate nucleic acids. They can be subdivided into six super families and are required for all aspects of nucleic acid metabolism. In general, all helicases function by converting the chemical energy stored in the bond between the gamma and beta phosphates of adenosine triphosphate into mechanical work, which results in the unidirectional movement of the helicase protein along one strand of a nucleic acid. The results of this translocation activity can range from separation of strands within duplex nucleic acids to the physical remodeling or removal of nucleoprotein complexes. In this review, we focus on describing key helicases from the model organism Saccharomyces cerevisiae that contribute to the regulation of homologous recombination, which is an essential DNA repair pathway for fixing damaged chromosomes.
Collapse
Affiliation(s)
- J Brooks Crickard
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; ,
| | - Eric C Greene
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; ,
| |
Collapse
|
38
|
Prakash A, Garcia-Moreno JF, Brown JAL, Bourke E. Clinically Applicable Inhibitors Impacting Genome Stability. Molecules 2018; 23:E1166. [PMID: 29757235 PMCID: PMC6100577 DOI: 10.3390/molecules23051166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022] Open
Abstract
Advances in technology have facilitated the molecular profiling (genomic and transcriptomic) of tumours, and has led to improved stratification of patients and the individualisation of treatment regimes. To fully realize the potential of truly personalised treatment options, we need targeted therapies that precisely disrupt the compensatory pathways identified by profiling which allow tumours to survive or gain resistance to treatments. Here, we discuss recent advances in novel therapies that impact the genome (chromosomes and chromatin), pathways targeted and the stage of the pathways targeted. The current state of research will be discussed, with a focus on compounds that have advanced into trials (clinical and pre-clinical). We will discuss inhibitors of specific DNA damage responses and other genome stability pathways, including those in development, which are likely to synergistically combine with current therapeutic options. Tumour profiling data, combined with the knowledge of new treatments that affect the regulation of essential tumour signalling pathways, is revealing fundamental insights into cancer progression and resistance mechanisms. This is the forefront of the next evolution of advanced oncology medicine that will ultimately lead to improved survival and may, one day, result in many cancers becoming chronic conditions, rather than fatal diseases.
Collapse
Affiliation(s)
- Anu Prakash
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Juan F Garcia-Moreno
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - James A L Brown
- Discipline of Surgery, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| | - Emer Bourke
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, H91 YR71 Galway, Ireland.
| |
Collapse
|
39
|
Porter S, Gueiros LA, Leão JC, Fedele S. Risk factors and etiopathogenesis of potentially premalignant oral epithelial lesions. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 125:603-611. [PMID: 29891084 DOI: 10.1016/j.oooo.2018.03.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 12/27/2022]
Abstract
Potentially malignant oral mucosal disease has some ability to give rise to malignancy of the oral epithelium, that is, oral squamous cell carcinoma (OSCC). The present article provides a succinct review of the possible or probable causes of potentially premalignant oral epithelial lesions. There is a focus upon studies that examined the causes or etiologic associations with clinically likely or histopathologically detectable oral epithelial dysplasia.
Collapse
Affiliation(s)
| | - Luiz Alcino Gueiros
- Oral Medicine Unit. Departamento de Clínica e Odontologia Preventiva, Universidade Federal de Pernambuco, Brazil
| | - Jair Carneiro Leão
- Oral Medicine Unit. Departamento de Clínica e Odontologia Preventiva, Universidade Federal de Pernambuco, Brazil
| | - Stefano Fedele
- UCL Eastman Dental Institute, London, UK; Oral Theme of the UCL/UCLH NIHR Biomedical Research Centre, UK
| |
Collapse
|
40
|
Richards JS, Ren YA, Candelaria N, Adams JE, Rajkovic A. Ovarian Follicular Theca Cell Recruitment, Differentiation, and Impact on Fertility: 2017 Update. Endocr Rev 2018; 39:1-20. [PMID: 29028960 PMCID: PMC5807095 DOI: 10.1210/er.2017-00164] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022]
Abstract
The major goal of this review is to summarize recent exciting findings that have been published within the past 10 years that, to our knowledge, have not been presented in detail in previous reviews and that may impact altered follicular development in polycystic ovarian syndrome (PCOS) and premature ovarian failure in women. Specifically, we will cover the following: (1) mouse models that have led to discovery of the derivation of two precursor populations of theca cells in the embryonic gonad; (2) the key roles of the oocyte-derived factor growth differentiation factor 9 on the hedgehog (HH) signaling pathway and theca cell functions; and (3) the impact of the HH pathway on both the specification of theca endocrine cells and theca fibroblast and smooth muscle cells in developing follicles. We will also discuss the following: (1) other signaling pathways that impact the differentiation of theca cells, not only luteinizing hormone but also insulinlike 3, bone morphogenic proteins, the circadian clock genes, androgens, and estrogens; and (2) theca-associated vascular, immune, and fibroblast cells, as well as the cytokines and matrix factors that play key roles in follicle growth. Lastly, we will integrate what is known about theca cells from mouse models, human-derived theca cell lines from patients who have PCOS and patients who do not have PCOS, and microarray analyses of human and bovine theca to understand what pathways and factors contribute to follicle growth as well as to the abnormal function of theca.
Collapse
Affiliation(s)
- JoAnne S. Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Yi A. Ren
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Nicholes Candelaria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Jaye E. Adams
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Aleksandar Rajkovic
- Department of Obstetrics, Gynecology and Reproductive Medicine, Magee-Women’s Research Institute, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
41
|
Angel J, DiGiovanni J. Genetic Determinants of Cancer Susceptibility. COMPREHENSIVE TOXICOLOGY 2018:330-360. [DOI: 10.1016/b978-0-12-801238-3.65251-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
42
|
DNA Damage as a Driver for Growth Delay: Chromosome Instability Syndromes with Intrauterine Growth Retardation. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8193892. [PMID: 29238724 PMCID: PMC5702399 DOI: 10.1155/2017/8193892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/16/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022]
Abstract
DNA is constantly exposed to endogenous and exogenous mutagenic stimuli that are capable of producing diverse lesions. In order to protect the integrity of the genetic material, a wide array of DNA repair systems that can target each specific lesion has evolved. Despite the availability of several repair pathways, a common general program known as the DNA damage response (DDR) is stimulated to promote lesion detection, signaling, and repair in order to maintain genetic integrity. The genes that participate in these pathways are subject to mutation; a loss in their function would result in impaired DNA repair and genomic instability. When the DDR is constitutionally altered, every cell of the organism, starting from development, will show DNA damage and subsequent genomic instability. The cellular response to this is either uncontrolled proliferation and cell cycle deregulation that ensues overgrowth, or apoptosis and senescence that result in tissue hypoplasia. These diverging growth abnormalities can clinically translate as cancer or growth retardation; both features can be found in chromosome instability syndromes (CIS). The analysis of the clinical, cellular, and molecular phenotypes of CIS with intrauterine growth retardation allows inferring that replication alteration is their unifying feature.
Collapse
|
43
|
Shi J, Liu NN, Yang YT, Xi XG. Purification and enzymatic characterization of Gallus gallus BLM helicase. J Biochem 2017; 162:183-191. [PMID: 28338731 DOI: 10.1093/jb/mvx013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/30/2017] [Indexed: 11/12/2022] Open
Abstract
Mutations in human BLM helicase give rise to the autosomal recessive Bloom syndrome, which shows high predisposition to types of malignant tumours. Though lots of biochemical and structural investigations have shed lights on the helicase core, structural investigations of the whole BLM protein are still limited due to its low stability and production. Here by comparing with the expression systems and functions of other BLM homologues, we developed the heterologous high-level expression and high-yield purification systems for Gallus gallus BLM (gBLM) in Escherichia coli. Subsequent DNA binding and unwinding determinations demonstrated that gBLM was a vigorous atypical DNA structure specific helicase, which not only showed high preference for the 3'-tailed DNA structures but also could efficiently unwind bubble DNA structures with blunt-ends, indicating its biological roles in processing DNA metabolism intermediates. Further comparative analysis between gBLM and gBLM Core revealed that the long N-terminal domain facilitated the binding affinity of forked and bubble DNA structures and it was also required for the DNA unwinding activities of gBLM. Thus, we present the first enzymatic characterization of gBLM and its N-terminal domain, providing a new model for probing the mechanism and structure of human BLM.
Collapse
Affiliation(s)
- Jing Shi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan-Tao Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.,Laboratoire de Biologie et Pharmacologie Appliquée, ENS de Cachan, Université Paris-Saclay, CNRS, 61 Avenue du Présidnt Wilson, Cachan 94235, France
| |
Collapse
|
44
|
Ochs HD, Petroni D. From clinical observations and molecular dissection to novel therapeutic strategies for primary immunodeficiency disorders. Am J Med Genet A 2017; 176:784-803. [DOI: 10.1002/ajmg.a.38480] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Hans D. Ochs
- Department of Pediatrics and Seattle Children's Research Institute; University of Washington; Seattle Washington
| | - Daniel Petroni
- Department of Pediatrics and Seattle Children's Research Institute; University of Washington; Seattle Washington
| |
Collapse
|
45
|
Mlody B, Wruck W, Martins S, Sperling K, Adjaye J. Nijmegen Breakage Syndrome fibroblasts and iPSCs: cellular models for uncovering disease-associated signaling pathways and establishing a screening platform for anti-oxidants. Sci Rep 2017; 7:7516. [PMID: 28790359 PMCID: PMC5548734 DOI: 10.1038/s41598-017-07905-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022] Open
Abstract
Nijmegen Breakage Syndrome (NBS) is associated with cancer predisposition, premature aging, immune deficiency, microcephaly and is caused by mutations in the gene coding for NIBRIN (NBN) which is involved in DNA damage repair. Dermal-derived fibroblasts from NBS patients were reprogrammed into induced pluripotent stem cells (iPSCs) in order to bypass premature senescence. The influence of antioxidants on intracellular levels of ROS and DNA damage were screened and it was found that EDHB-an activator of the hypoxia pathway, decreased DNA damage in the presence of high oxidative stress. Furthermore, NBS fibroblasts but not NBS-iPSCs were found to be more susceptible to the induction of DNA damage than their healthy counterparts. Global transcriptome analysis comparing NBS to healthy fibroblasts and NBS-iPSCs to embryonic stem cells revealed regulation of P53 in NBS fibroblasts and NBS-iPSCs. Cell cycle related genes were down-regulated in NBS fibroblasts. Furthermore, oxidative phosphorylation was down-regulated and glycolysis up-regulated specifically in NBS-iPSCs compared to embryonic stem cells. Our study demonstrates the utility of NBS-iPSCs as a screening platform for anti-oxidants capable of suppressing DNA damage and a cellular model for studying NBN de-regulation in cancer and microcephaly.
Collapse
Affiliation(s)
- Barbara Mlody
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), 13092, Berlin, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Soraia Martins
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Karl Sperling
- Charité - Universitätsmedizin Berlin, Institute of Medical and Human Genetics, 13353, Berlin, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich Heine University, 40225, Düsseldorf, Germany.
| |
Collapse
|
46
|
Jastaniah W. Successful treatment of mature B-cell lymphoma with rituximab-based chemotherapy in a patient with Bloom syndrome. Pediatr Blood Cancer 2017; 64. [PMID: 27966805 DOI: 10.1002/pbc.26385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 12/18/2022]
Abstract
This report presents a case of Bloom syndrome (BS) in a consanguineous Saudi family. The patient, an 11-year-old male with mature B-cell lymphoma, had minimal therapeutic response and significant dose-limiting toxicity with standard chemotherapy treatment. He later responded successfully to a rituximab-based chemotherapy protocol. This case highlights that the rituximab-based chemotherapy protocol is an effective and safe treatment alternative for mature B-cell lymphoma in patients with BS. Further trials are warranted to investigate this modality of treatment.
Collapse
Affiliation(s)
- Wasil Jastaniah
- College of Medicine, Department of Pediatrics, Umm AlQura University, Makkah, Saudi Arabia.,Princess Noorah Oncology Center, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| |
Collapse
|
47
|
Giordano CN, Yew YW, Spivak G, Lim HW. Understanding photodermatoses associated with defective DNA repair: Syndromes with cancer predisposition. J Am Acad Dermatol 2017; 75:855-870. [PMID: 27745641 DOI: 10.1016/j.jaad.2016.03.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 01/11/2023]
Abstract
Hereditary photodermatoses are a spectrum of rare photosensitive disorders that are often caused by genetic deficiency or malfunction of various components of the DNA repair pathway. This results clinically in extreme photosensitivity, with many syndromes exhibiting an increased risk of cutaneous malignancies. This review will focus specifically on the syndromes with malignant potential, including xeroderma pigmentosum, Bloom syndrome, and Rothmund-Thomson syndrome. The typical phenotypic findings of each disorder will be examined and contrasted, including noncutaneous identifiers to aid in diagnosis. The management of these patients will also be discussed. At this time, the mainstay of therapy remains strict photoprotection; however, genetic therapies are under investigation.
Collapse
Affiliation(s)
| | - Yik Weng Yew
- Department of Dermatology, National Skin Centre, Singapore
| | - Graciela Spivak
- Department of Biology, Stanford University, Stanford, California
| | - Henry W Lim
- Department of Dermatology, Henry Ford Hospital, Detroit, Michigan.
| |
Collapse
|
48
|
Abstract
Hereditary bone tumors are rare and result from mutations affecting cell cycle regulation (e.g. retinoblastoma syndrome/RB1 and Li-Fraumeni syndrome/TP53, Gardner syndrome/APC), energy metabolism (enchondromatosis/IDH1/2), complex signaling cascades (multiple hereditary exostoses/EXT1/2) and DNA integrity (Rothmund-Thomson/RECQL4, Werner/WRN and Bloom syndromes/BLM). The majority of syndromes are incompletely understood and can lead to multiple benign tumors, of which some might undergo secondary malignant transformation over time (enchondromatosis: enchondromas, multiple hereditary exostoses: osteochondromas, Gardner syndrome: osteomas) or bone sarcomas, primarily osteosarcomas as primary (Li-Fraumeni, Rothmund-Thomson, Werner and Bloom syndromes) or secondary manifestation (retinoblastoma syndrome) of the disease. Some syndromes additionally predispose to the development of a variety of other malignant tumors during life. Compared to sporadically occurring tumors, syndrome-related neoplasms can differ in the time of manifestation, site and histology, which can help in recognizing a specific tumor predisposition syndrome.
Collapse
Affiliation(s)
- D Baumhoer
- Institut für Pathologie, Knochentumor-Referenzzentrum, Universitätsspital Basel, Schönbeinstrasse 40, 4031, Basel, Schweiz.
| |
Collapse
|
49
|
Romero-Laorden N, Castro E. Inherited mutations in DNA repair genes and cancer risk. Curr Probl Cancer 2017; 41:251-264. [PMID: 28454847 DOI: 10.1016/j.currproblcancer.2017.02.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/07/2017] [Accepted: 02/21/2017] [Indexed: 02/09/2023]
Abstract
Although most cancer cases are due to somatic mutations, up to 10% of cases are attributable to germline mutations. This inherited cancer predisposition is mostly due to the loss of function of suppressor genes rather than the activation of oncogenes. Defects in DNA repair genes are the genetic events most commonly involved in hereditary cancers. The implementation of high-throughput sequencing in diagnostic testing has uncovered new predisposition genes. Furthermore, for some tumor types these sequencing techniques have also unveiled a prevalence of germline mutations significantly higher than previous estimations. The clinical implications of many of these repair defects are yet to be defined. Further studies will need to be conducted to establish the most appropriated management of unaffected carriers that are likely to grow in numbers. On the contrary, the presence of DNA repair defects provides a unique opportunity for the development of treatments that take advantage of a tumor feature. In this review article, we summarize not only the most common syndromes linked to DNA repair defects but also less known entities. We address the underlying genetics and the clinical implications of each DNA repair defect as well as the current recommendations for cancer surveillance.
Collapse
Affiliation(s)
| | - Elena Castro
- HM Hospitales, Centro Integral Oncológico HM Clara Campal, Madrid, Spain.
| |
Collapse
|
50
|
Shi J, Chen WF, Zhang B, Fan SH, Ai X, Liu NN, Rety S, Xi XG. A helical bundle in the N-terminal domain of the BLM helicase mediates dimer and potentially hexamer formation. J Biol Chem 2017; 292:5909-5920. [PMID: 28228481 DOI: 10.1074/jbc.m116.761510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/14/2017] [Indexed: 12/11/2022] Open
Abstract
Helicases play a critical role in processes such as replication or recombination by unwinding double-stranded DNA; mutations of these genes can therefore have devastating biological consequences. In humans, mutations in genes of three members of the RecQ family helicases (blm, wrn, and recq4) give rise to three strikingly distinctive clinical phenotypes: Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome, respectively. However, the molecular basis for these varying phenotypic outcomes is unclear, in part because a full mechanistic description of helicase activity is lacking. Because the helicase core domains are highly conserved, it has been postulated that functional differences among family members might be explained by significant differences in the N-terminal domains, but these domains are poorly characterized. To help fill this gap, we now describe bioinformatics, biochemical, and structural data for three vertebrate BLM proteins. We pair high resolution crystal structures with SAXS analysis to describe an internal, highly conserved sequence we term the dimerization helical bundle in N-terminal domain (DHBN). We show that, despite the N-terminal domain being loosely structured and potentially lacking a defined three-dimensional structure in general, the DHBN exists as a dimeric structure required for higher order oligomer assembly. Interestingly, the unwinding amplitude and rate decrease as BLM is assembled from dimer into hexamer, and also, the stable DHBN dimer can be dissociated upon ATP hydrolysis. Thus, the structural and biochemical characterizations of N-terminal domains will provide new insights into how the N-terminal domain affects the structural and functional organization of the full BLM molecule.
Collapse
Affiliation(s)
- Jing Shi
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei-Fei Chen
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Zhang
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - San-Hong Fan
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xia Ai
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na-Nv Liu
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Stephane Rety
- the Institut de Biochimie et Chimie des Protéines, CNRS UMR 5086, 7 Passage du Vercors, 69367 Lyon, France, and
| | - Xu-Guang Xi
- From the College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China, .,the Laboratoire de Biologie et Pharmacologie Appliquée, ENS de Cachan, Université Paris-Saclay, CNRS, 61 Avenue du Président Wilson, 94235 Cachan, France
| |
Collapse
|