1
|
D’Alessandro M, Parolin C, Bukvicki D, Siroli L, Vitali B, De Angelis M, Lanciotti R, Patrignani F. Probiotic and Metabolic Characterization of Vaginal Lactobacilli for a Potential Use in Functional Foods. Microorganisms 2021; 9:microorganisms9040833. [PMID: 33919838 PMCID: PMC8070825 DOI: 10.3390/microorganisms9040833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 12/04/2022] Open
Abstract
The main aim of this work was to verify the metabolic and functional aptitude of 15 vaginal strains belonging to Lactobacillus crispatus, Lactobacillus gasseri, and Limosilactobacillus vaginalis (previously Lactobacillus vaginalis), already characterized for their technological and antimicrobial properties. In order to evaluate the metabolic profile of these vaginal strains, a phenotype microarray analysis was performed on them. Functional parameters such as hydrophobicity, auto-aggregation, deconjugation of bile salts, adhesion to an intestinal cell line (Caco-2), and a simulated digestion process were evaluated for these strains. A good number of these strains showed hydrophobicity values higher than 70%. Regarding the auto-aggregation assay, the most promising strains were L. crispatus BC9 and BC1, L. gasseri BC10 and BC14, and L. vaginalis BC17. Moreover, L. crispatus BC4, BC6, BC7, and BC8 were characterized by strong bile salts hydrolase activity (BHS). In addition, L. crispatus BC8 and L. vaginalis BC17 were characterized by a medium ability to adhere to Caco-2 cells. Data related to digestion process showed a strong ability of vaginal lactobacilli to withstand this stress. In conclusion, the data collected show the metabolic versatility and several exploitable functional properties of the investigated vaginal lactobacilli.
Collapse
Affiliation(s)
- Margherita D’Alessandro
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (L.S.); (R.L.); (F.P.)
- Correspondence:
| | - Carola Parolin
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (C.P.); (B.V.)
| | - Danka Bukvicki
- Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, University of Belgrade, 11000 Belgrade, Serbia;
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (L.S.); (R.L.); (F.P.)
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Beatrice Vitali
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy; (C.P.); (B.V.)
| | - Maria De Angelis
- Department of Soil, Plant, and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (L.S.); (R.L.); (F.P.)
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (L.S.); (R.L.); (F.P.)
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
2
|
Mousavi Khaneghah A, Abhari K, Eş I, Soares MB, Oliveira RB, Hosseini H, Rezaei M, Balthazar CF, Silva R, Cruz AG, Ranadheera CS, Sant’Ana AS. Interactions between probiotics and pathogenic microorganisms in hosts and foods: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.11.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
A low-power ultrasound attenuation improves the stability of biofilm and hydrophobicity of Propionibacterium freudenreichii subsp. freudenreichii DSM 20271 and Acidipropionibacterium jensenii DSM 20535. Food Microbiol 2019; 78:104-109. [DOI: 10.1016/j.fm.2018.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 02/05/2023]
|
4
|
Sakandar HA, Hussain R, Kubow S, Sadiq FA, Huang W, Imran M. Sourdough bread: A contemporary cereal fermented product. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13883] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hafiz Arbab Sakandar
- Faculty of Biological Sciences, Microbiology Department Quaid‐I‐Azam University Islamabad Pakistan
- Faculty of Agricultural and Environmental Sciences, School of Human Nutrition McGill University Montreal Quebec Canada
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Raza Hussain
- Faculty of Agricultural and Environmental Sciences, School of Human Nutrition McGill University Montreal Quebec Canada
| | - Stan Kubow
- Faculty of Agricultural and Environmental Sciences, School of Human Nutrition McGill University Montreal Quebec Canada
| | | | - Weining Huang
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Muhammad Imran
- Faculty of Biological Sciences, Microbiology Department Quaid‐I‐Azam University Islamabad Pakistan
| |
Collapse
|
5
|
Affiliation(s)
- Catherine S. Birch
- Institute for Agri‐Food Research & Innovation, School of Natural & Environmental Sciences Newcastle University Newcastle NE1 7RU UK
| | - Graham A. Bonwick
- Institute for Agri‐Food Research & Innovation, School of Natural & Environmental Sciences Newcastle University Newcastle NE1 7RU UK
- Fera Science Limited Sand Hutton, York YO41 1LZ UK
| |
Collapse
|
6
|
Dietary Nutrients, Proteomes, and Adhesion of Probiotic Lactobacilli to Mucin and Host Epithelial Cells. Microorganisms 2018; 6:microorganisms6030090. [PMID: 30134518 PMCID: PMC6163540 DOI: 10.3390/microorganisms6030090] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 01/26/2023] Open
Abstract
The key role of diet and environment in human health receives increasing attention. Thus functional foods, probiotics, prebiotics, and synbiotics with beneficial effects on health and ability to prevent diseases are in focus. The efficacy of probiotic bacteria has been connected with their adherence to the host epithelium and residence in the gut. Several in vitro techniques are available for analyzing bacterial interactions with mucin and intestinal cells, simulating adhesion to the host in vivo. Proteomics has monitored and identified proteins of probiotic bacteria showing differential abundance elicited in vitro by exposure to food components, including potential prebiotics (e.g., certain carbohydrates, and plant polyphenols). While adhesion of probiotic bacteria influenced by various environmental factors relevant to the gastrointestinal tract has been measured previously, this was rarely correlated with changes in the bacterial proteome induced by dietary nutrients. The present mini-review deals with effects of selected emerging prebiotics, food components and ingredients on the adhesion of probiotic lactobacilli to mucin and gut epithelial cells and concomitant abundancy changes of specific bacterial proteins. Applying this in vitro synbiotics-like approach enabled identification of moonlighting and other surface-located proteins of Lactobacillus acidophilus NCFM that are possibly associated with the adhesive mechanism.
Collapse
|