1
|
Meamar R, Haddad S, Nasiri R, Borojeni GS, Kolahdoozan M, Eizadi-Mood N, Pourisfahani SA, Mahvari R, Rezaei A, Fesharaki M. Ferulic acid grafted into β-cyclodextrin nanosponges ameliorates Paraquat-induced human MRC-5 fibroblast injury. ENVIRONMENTAL TOXICOLOGY 2024; 39:44-60. [PMID: 37615264 DOI: 10.1002/tox.23941] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Paraquat (PQ) is a commercially important and effective herbicide in the world. Nevertheless, it has higher toxicity causing acute organ damage and different complications, mainly in the lungs and kidneys. Ferulic acid (FA), 4-hydroxy-3-methoxycinnamic acid imposes multiple pharmacological impacts. No protective effect of FA on PQ poisoning-caused human embryonic lung fibroblast damage has not been reported. Despite their many beneficial effects, FA is characterized by poor water solubility, low bioavailability, and phytochemical instability. To solve the problem, β-cyclodextrin nanosponge (β-CD NSs) was utilized to increase the solubility of FA so that it was grafted into β-CD NSs to establish β-CD@FA NSs. The purpose of this work was to examine for the first time the protective effect of β-CD@FA NS on MRC-5 human lung cells damages induced by PQ poisoning. MTS assay was performed to investigate the viability of MRC-5 cells at different concentrations of FA/β-CD@FA NSs when cells were co-cultured with 0.2 μg/mL PQ. The flow cytometry study was carried out to determine apoptosis. Malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) levels were detected using appropriate biochemistry kits. Compared with the PQ group, the cell activity, CAT, and SOD levels were significantly increased in the FA and chiefly in β-CD@FA NSs intervention groups, whereas apoptosis and MDA levels were markedly decreased. The inflammatory factors tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), and interleukin 22 (IL-22) were detected. The results demonstrate that β-CD@FA NSs can inhibit PQ-induced cell damage by enhancing antioxidant stress capacity and regulation of inflammatory responses.
Collapse
Affiliation(s)
- Rokhsareh Meamar
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shadi Haddad
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rozita Nasiri
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Gelare Sadeghi Borojeni
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Isfahan, Iran
- Department of Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Tehran, Iran
| | - Majid Kolahdoozan
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Isfahan, Iran
| | - Nastaran Eizadi-Mood
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Razieh Mahvari
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrafarin Fesharaki
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Zhang H, Xu CN, Mine Y. Synthetic phosphoserine dimer attenuates lipopolysaccharide‐induced inflammatory response in human intestinal epithelial cells via activation of NF‐κB and MAPKs cell signalling pathways. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hua Zhang
- Department of Food Science University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Cai Na Xu
- Department of Food Science University of Guelph Guelph Ontario N1G 2W1 Canada
| | - Yoshinori Mine
- Department of Food Science University of Guelph Guelph Ontario N1G 2W1 Canada
| |
Collapse
|
3
|
Huang X, Moon SH, Lee J, Paik H, Lee EJ, Min B, Ahn DU. Effective Preparation Method of Phosphopeptides from Phosvitin and the Analysis of Peptide Profiles Using Tandem Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:14086-14101. [PMID: 31766846 DOI: 10.1021/acs.jafc.9b05973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effect of high-temperature and mild-pressure (HTMP) pretreatment on the enzymatic hydrolysis of phosvitin and the structural characteristics of the phosphopeptides produced were analyzed using tandem mass spectrometry. The HTMP pretreatment hydrolyzed phosvitin at random sites and helped the subsequent enzyme hydrolysis of the peptides produced. With the HTMP pretreatment alone, 154 peptides were produced, while the use of trypsin, Protex 6L, and Multifect 14L in combination with the pretreatment produced 252, 280, and 164 peptides, respectively. The use of two enzyme combinations (trypsin + Protex 6L and trypsin + Multifect 14L) helped the hydrolysis further. The number of phosphopeptides produced increased when the modifications within the same amino acid sequences were considered. This study indicated that HTMP pretreatment was a breakthrough method to improve the enzymatic hydrolysis of phosvitin that enabled an easy production of phosvitin phosphopeptides for their subsequent functional characterizations.
Collapse
Affiliation(s)
- Xi Huang
- College of Food Science & Technology , Huazhong Agricultural University , Egg Processing Technology Local Joint National Engineering Research Center, National R&D Center for Egg Processing, Wuhan , Hubei 430070 , People's Republic of China
| | - Sun Hee Moon
- Animal Science Department , Iowa State University , Ames , Iowa 50011 , United States
| | - Jaehoon Lee
- Division of Animal Life Science , Konkuk University , Seoul 05029 , Korea
| | - Hyundong Paik
- Division of Animal Life Science , Konkuk University , Seoul 05029 , Korea
| | - Eun Joo Lee
- Department of Food and Nutrition , University of Wisconsin-Stout , Menomonie , Wisconsin 54751 , United States
| | - Byungrok Min
- Food Science and Technology Ph.D. Program, Department of Agriculture, Food, and Resource Sciences , University of Maryland Eastern Shore , Princess Anne , Maryland 21853 , United States
| | - Dong U Ahn
- Animal Science Department , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|