1
|
Atambayeva Z, Nurgazezova A, Assirzhanova Z, Urazbayev Z, Kambarova A, Dautova A, Idyryshev B, Sviderskaya D, Kaygusuz M. Nutritional, physicochemical, textural and sensory characterization of horsemeat patties as affected by whole germinated green buckwheat and its flour. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2174552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Zhibek Atambayeva
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Almagul Nurgazezova
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Zhanna Assirzhanova
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Zhumatay Urazbayev
- Oilseed Processing Laboratory, Kazakh Research Institute of Processing and Food Industry, Astana, Kazakhstan
| | - Aray Kambarova
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Assel Dautova
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Berik Idyryshev
- Department of Technology of Food Production and Biotechnology, Shakarim University of Semey, Semey, Kazakhstan
| | - Diana Sviderskaya
- Faculty of Engineering, Toraighyrov University, Pavlodar, Kazakhstan
| | - Meruyert Kaygusuz
- Vocational School of Technical Sciences, Isparta University of Applied Sciences, Isparta, Türkiye
| |
Collapse
|
2
|
Lahuta LB, Górecki RJ, Szablińska-Piernik J, Horbowicz M. Changes in the Carbohydrate Profile in Common Buckwheat ( Fagopyrum esculentum Moench) Seedlings Induced by Cold Stress and Dehydration. Metabolites 2023; 13:metabo13050672. [PMID: 37233712 DOI: 10.3390/metabo13050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Plant species are sensitive to stresses, especially at the seedling stage, and they respond to these conditions by making metabolic changes to counteract the negative effects of this. The objectives of this study were to determine carbohydrate profile in particular organs (roots, hypocotyl, and cotyledons) of common buckwheat seedlings and to verify whether carbohydrate accumulation is similar or not in the organs in response to cold stress and dehydration. Roots, hypocotyl, and cotyledons of common buckwheat seedlings have various saccharide compositions. The highest concentrations of cyclitols, raffinose, and stachyose were found in the hypocotyl, indicating that they may be transported from cotyledons, although this needs further studies. Accumulation of raffinose and stachyose is a strong indicator of the response of all buckwheat organs to introduced cold stress. Besides, cold conditions reduced d-chiro-inositol content, but did not affect d-pinitol level. Enhanced accumulation of raffinose and stachyose were also a distinct response of all organs against dehydration at ambient temperature. The process causes also a large decrease in the content of d-pinitol in buckwheat hypocotyl, which may indicate its transformation to d-chiro-inositol whose content increased at that time. In general, the sucrose and its galactosides in hypocotyl tissues were subject to the highest changes to the applied cold and dehydration conditions compared to the cotyledons and roots. This may indicate tissue differences in the functioning of the protective system(s) against such threats.
Collapse
Affiliation(s)
- Lesław B Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland
| | - Ryszard J Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland
| | - Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland
| | - Marcin Horbowicz
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego 1a, 10-719 Olsztyn, Poland
| |
Collapse
|
3
|
Espinosa-Ramírez J, Mariscal-Moreno RM, Chuck-Hernández C, Serna-Saldivar SO, Espiricueta-Candelaria RS. Effects of the substitution of wheat flour with raw or germinated ayocote bean (Phaseolus coccineus) flour on the nutritional properties and quality of bread. J Food Sci 2022; 87:3766-3780. [PMID: 35904200 DOI: 10.1111/1750-3841.16263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/28/2022]
Abstract
This study aimed to evaluate the potential of 10%, 20%, and 30% of raw (ARF) and germinated (AGF) ayocote bean flour as a partial substitute for wheat flour in breadmaking. Substitution with both ayocote bean flours modified the water absorption and development time while maintaining the dough stability. Supplemented breads had 13%, 51%, and 132% higher protein, mineral, and crude fiber content, respectively, than control bread (100% wheat). The breadmaking features, color and crumb firmness, were affected by the substitution level. Sensory analysis revealed that germination could improve the taste and smell of breads produced with ayocote bean flour. The sensory attribute scores of 10% AGF bread were comparable to those of the control bread. Supplementation reduced the in vitro protein digestibility, although the effect was less pronounced in 10% ARF and 20% AGF breads. The limiting amino acid score of supplemented breads increased up to 70%, which improved their protein digestibility-corrected amino acid scores. Supplementation with 20% or 30% of both ARF and AGF increased resistant starch values and decreased the total digestible starch of breads. Thus, the results showed that substituting wheat with ARF or AGF improves the nutritional properties of bread. However, low substitution levels should be selected to avoid a considerable decrease in physical and sensory properties. PRACTICAL APPLICATION: Substituting wheat flour with ayocote bean flour improved the nutritional value of bread. Germination of ayocote beans decreased the cooking stability of composite dough. Bread fortified with ayocote flour had high levels of essential amino acids. Bread with raw or germinated ayocote flours had high limiting amino acid scores. Composite bread had high resistant starch and low total digestible starch.
Collapse
Affiliation(s)
- Johanan Espinosa-Ramírez
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, 64849, N.L., Monterrey, Mexico
| | | | - Cristina Chuck-Hernández
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, 64849, N.L., Monterrey, Mexico.,Tecnologico de Monterrey, The institute for Obesity Research, Av. Eugenio Garza Sada 2501, 64849, N.L., Monterrey, Mexico
| | - Sergio O Serna-Saldivar
- Tecnologico de Monterrey, School of Engineering and Science, Av. Eugenio Garza Sada 2501, 64849, N.L., Monterrey, Mexico
| | | |
Collapse
|
4
|
Phenolic compounds in common buckwheat sprouts: composition, isolation, analysis and bioactivities. Food Sci Biotechnol 2022; 31:935-956. [PMID: 35873372 PMCID: PMC9300812 DOI: 10.1007/s10068-022-01056-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Phenolic compounds in common buckwheat sprouts (CBSs) have gained research interest because of their multiple health benefits. Phenolic acids, flavanones, flavonols, flavan-3-ols, and anthocyanins are important bioactive components of CBS that exhibit biological activities, including anti-inflammatory, antioxidant, anti-proliferative, and immunomodulatory effects. The isolation and quantitative and qualitative analyses of these phenolic compounds require effective and appropriate extraction and analytical methods. The most recent analytical method developed for determining the phenolic profile is HPLC coupled with a UV-visible detector and/or MS. This review highlights the extraction, purification, analysis, and bioactive properties of phenolic compounds from CBS described in the literature.
Collapse
|
5
|
Adetokunboh AH, Obilana AO, Jideani VA. Enzyme and Antioxidant Activities of Malted Bambara Groundnut as Affected by Steeping and Sprouting Times. Foods 2022; 11:783. [PMID: 35327205 PMCID: PMC8947651 DOI: 10.3390/foods11060783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Bambara groundnut (BGN) is termed a complete food due to its nutritional composition and has been researched often for its nutritional constituents. Malting BGN seeds have shown improved nutritional and functional characteristics, which can be used to produce an amylase-rich product as a functional ingredient for food and beverage production in homes and industries. The aim of this study was to investigate the enzyme and antioxidant activities of malted BGN affected by steeping and sprouting times. BGN was malted by steeping in distilled water at 25-30 °C for 36 and 48 h and then sprouted for 144 h at 30 °C. Samples were drawn every 24 h for drying to study the effect of steeping and sprouting times on the moisture, sprout length, pH, colour, protein content, amylase, total polyphenols, and antioxidant activities of the BGN seeds. The steeping and sprouting times significantly affected the BGN malt colour quality and pH. The protein content of the malted BGN seeds was not significantly different based on steeping and sprouting times. Steeping and sprouting times significantly affected the α- and β-amylase activities of the BGN seeds. The activity of amylases for 36 and 48 h steeping times were 0.16 and 0.15 CU/g for α-amylase and were 0.22 and 0.23 BU/g for β-amylase, respectively. Amylase-rich BGN malt was produced by steeping for 36 h and sprouting for 96 h. Amylase-rich BGN malt can be useful as a functional food ingredient in food and beverage formulations.
Collapse
Affiliation(s)
| | | | - Victoria A. Jideani
- Department of Food Science and Technology, Cape Peninsula University of Technology, Bellville 7535, South Africa; (A.H.A.); (A.O.O.)
| |
Collapse
|
6
|
Janovská D, Jágr M, Svoboda P, Dvořáček V, Meglič V, Hlásná Čepková P. Breeding Buckwheat for Nutritional Quality in the Czech Republic. PLANTS (BASEL, SWITZERLAND) 2021; 10:1262. [PMID: 34206195 PMCID: PMC8309114 DOI: 10.3390/plants10071262] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 01/30/2023]
Abstract
Buckwheat is a nutritionally valuable crop, an alternative to common cereals also usable in gluten-free diets. The selection of buckwheat genotypes suitable for further breeding requires the characterization and evaluation of genetic resources. The main objective of this work was to evaluate selected phenotypic and morphological traits using international buckwheat descriptors, including total phenolic content and antioxidant activity, on a unique set of 136 common buckwheat accessions grown in 2019-2020 under Czech Republic conditions. In addition, UHPLC-ESI- MS/MS was used to analyze a wide spectrum of 20 phenolic compounds in buckwheat seeds, including four flavanols, three phenolic acids, seven flavonols, four flavones, and two flavanones. Significant differences among years and genotypes were observed for morphological traits (plant height and 1000-seed weight) and antioxidant activity, as well as levels of observed chemical compounds. Antioxidant activity, crude protein content, plant height and rutin content were characterized by higher mean values in 2020 than in 2019 and vice versa for total polyphenol content and 1000-seed weight. Crude protein content was the most stable across years, while total polyphenol content and rutin content varied greatly from year to year. The most abundant phenolic compounds were rutin, hyperoside, epicatechin, catechin, vitexin, isovitexin, orientin and isoorientin. Protein content was negatively correlated with plant height, catechin and epicatechin content. On the other hand, AA and TPC were positively correlated with rutin, hyperoside and chlorogenic acid. Five accessions showed high stability of the evaluated traits under changing conditions within both years of observation. These materials can be used in breeding programmes aimed at improving buckwheat genotypes with emphasis on quality traits.
Collapse
Affiliation(s)
- Dagmar Janovská
- Gene Bank, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic;
| | - Michal Jágr
- Quality and Plant Products, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic; (M.J.); (V.D.)
| | - Pavel Svoboda
- Molecular Genetics, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic;
| | - Václav Dvořáček
- Quality and Plant Products, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic; (M.J.); (V.D.)
| | - Vladimir Meglič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, SI-1000 Ljubljana, Slovenia;
| | - Petra Hlásná Čepková
- Gene Bank, Crop Research Institute, Drnovská 507/73, 161 06 Prague 6, Czech Republic;
| |
Collapse
|