1
|
Chen J, Shi W, Ran C, Cui H, Li Y, Diao K, Lu S, Dong J, Wang Q. Development and characterization of wax-bovine bone protein-grapeseed oil composite oleogels: Experimental and molecular simulation studies. Food Chem 2024; 460:140596. [PMID: 39067430 DOI: 10.1016/j.foodchem.2024.140596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Three new types of composite oleogel formulations were designed. Specifically, oleogels were prepared using 90% grapeseed oil as the oil phase and carnauba wax (CW)/beeswax/rice bran wax-bovine bone protein (BBP) as gelators. All samples were solid and had an oil-binding capacity of >90%. BBP addition considerably improved the waxy texture of the oleogel and had an important effect on the crystalline network. X-ray diffractometry indicated that BBP increased the β'-crystal content. All samples showed sol-gel thermodynamic behavior under temperature scanning. Fourier-transform infrared spectroscopy and molecular docking confirmed the formation of noncovalent interactions dominated by van der Waals forces during the development of the oleogel. The optimal components of the three oleogels exhibited an excellent effect of slowing down the release of free fatty acids. This study could serve as a reference for the development and application of wax-protein as a new binary gelator in the food industry.
Collapse
Affiliation(s)
- Jingya Chen
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenjing Shi
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Cenchen Ran
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Haotian Cui
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yangyang Li
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Kui Diao
- Silk Road camel Bell trading Co., LTD, Tumushuk, Xinjiang, China
| | - Shiling Lu
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Juan Dong
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Qingling Wang
- School of Food Science and Technology, Shihezi University, Xinjiang Uygur Autonomous Region, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
2
|
Biancardi VR, da Silva Ferreira MV, Bigansolli AR, de Freitas KM, Zonta E, Barbosa MIMJ, Kurozawa LE, Barbosa Junior JL. A physicochemical evaluation of ossein-hydroxyapatite within the bovine bone matrix revealed demineralization and making type I collagen available as a result of processing and solubilization by acids. J Food Sci 2024; 89:1540-1553. [PMID: 38343300 DOI: 10.1111/1750-3841.16954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/16/2023] [Accepted: 01/08/2024] [Indexed: 03/12/2024]
Abstract
Bovine bone is an animal-origin matrix rich in type I collagen (COL I) and it necessitates prior demineralization and makes COL I available. This study investigated the ossein-hydroxyapatite physicochemical properties evaluation as a result of processing and solubilization by acids and revealed the bone matrix demineralization and making COL I available. The tibia residue from bovine sources was processed, ground, and transformed into bone matrix powder. The bone matrix was solubilized in acetic acid followed by lactic acid. The bone matrix was evaluated as a result of processing and solubilization by acids: ossein and hydroxyapatite percentages by nitrogen and ash content, mineral content, particle size distribution, Fourier-transformation infrared spectroscopy, x-ray diffraction, and scanning electron microscope. For the obtained residual extracts, pH and mineral content were evaluated. The solubilization by acids affected the ossein-hydroxyapatite physicochemical properties, and the bone matrix solubilized by acetic and lactic acid showed the preservation of the ossein alongside the loss of hydroxyapatite. The processing and the solubilization by acids were revealed to be a alternative to bone matrix demineralization and enabling the accessibility of bone COL I. PRACTICAL APPLICATION: Bovine bone is an abundant type I collagen source, but processing maneuvers and demineralization effect present limitations due to the rigidity of the structural components. Exploring methodologies to process and demineralize will allow type I collagen to be obtained from the bone source, and direct and amplify the potentialities in the chemical and food industries. The research focused on bone sources and collagen availability holds paramount significance, and promotes repurposing agribusiness residues and development of protein-base products.
Collapse
Affiliation(s)
- Vanessa Ricas Biancardi
- Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | - Marcus Vinícius da Silva Ferreira
- Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | - Antônio Renato Bigansolli
- Instituto de Tecnologia, Departamento de Engenharia Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | | | - Everaldo Zonta
- Instituto de Agronomia, Departamento de Solos, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | - Maria Ivone Martins Jacintho Barbosa
- Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | - Louise Emy Kurozawa
- Faculdade de Engenharia de Alimentos, Departamento de Engenharia e Tecnologia de Alimentos, Universidade Estadual de Campinas, Campinas, São Paulo, Brasil
| | - José Lucena Barbosa Junior
- Instituto de Tecnologia, Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| |
Collapse
|
3
|
The comprehensive evaluation of two collagen gels used for sausage casing extrusion purposes: The role of the structural and mechanical properties. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Sangaré M, Traoré L, Chèné C, Karoui R. Assessing the quality of dry sausages using fluorescence spectroscopy, physico-chemical and dynamic testing rheology: A preliminary study. J Texture Stud 2022; 53:693-704. [PMID: 35848487 DOI: 10.1111/jtxs.12711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/28/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022]
Abstract
The viscoelastic and the structure properties of three brands of dry sausages (Auvergne, Beef-poultry, and Galbanetto) were studied using dynamic rheology and fluorescence spectroscopy. The storage and the loss modulus of sausage samples showed a viscoelastic character. The principal component analysis (PCA) carried out on the normalised rheological and physico-chemical parameters allowed to differentiate the sausage samples into 3 groups according to their brands. This trend was confirmed by the factorial discriminant analysis (FDA) where 74.44% of correct classification was obtained. The emission spectra acquired after excitation set at 290, 340, and 360 nm and excitation spectra scanned after emission set at 410 nm allowed clear differentiation between the three brand samples. The obtained results were confirmed following the application of partial least squares regression (PLSR) to the fluorescence and physico-chemical parameters since an excellent prediction of moisture content was obtained from the excitation spectra set at 340 nm (R2 = 0.99) and 360 nm (R2 = 0.99). The protein content of dry sausages was well predicted after excitation set at 290 and 340 nm with R2 of 0.96 and 0.97, respectively, while the fat level was well estimated after excitation set at 340 and 360 nm and emission set at 410 nm (R2 = 0.96, 0.96 and 0.94, respectively). The obtained results showed the potential use of fluorescence spectroscopy as a rapid technique for evaluating the quality of dry sausages. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Moriken Sangaré
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, Lens, France.,Institut Supérieur des Sciences et Médecine Vétérinaire de Dalaba, Guinée.,Univ. Gamal Abdel Nasser of Conakry, Guinea
| | | | | | - Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d'Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, UMR-T 1158, BioEcoAgro, Lens, France
| |
Collapse
|
5
|
Liu H, Guo Y, Xu X, Liu J, Zhang H, Qi L, Zhang C, Gao H. Comparative assessment of bone collagen recovered from different livestock and poultry species: microstructure, physicochemical characteristics and functional properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Hong Liu
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Yujie Guo
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Xiong Xu
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Jiqian Liu
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Hongru Zhang
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Liwei Qi
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Chunhui Zhang
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Hongwei Gao
- Xinjiang Taikun Group Co., Ltd. Xinjiang Uygur, Autonomous Region Changji 831100 China
| |
Collapse
|
6
|
Oliveira WQD, Neri-Numa IA, Arruda HS, McClements DJ, Pastore GM. Encapsulated flavonoids for diabetic foods: The emerging paradigm for an effective therapy. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|