1
|
Bi Y, Liang L, Qiao K, Luo J, Liu X, Sun B, Zhang Y. A comprehensive review of plant-derived salt substitutes: Classification, mechanism, and application. Food Res Int 2024; 194:114880. [PMID: 39232518 DOI: 10.1016/j.foodres.2024.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024]
Abstract
The diseases caused by excessive sodium intake derived from NaCl consumption have attracted widespread attention worldwide, and many researchers are committed to finding suitable ways to reduce sodium intake during the dietary process. Salt substitute is considered an effective way to reduce sodium intake by replacing all/part of NaCl in food without reducing the saltiness while minimizing the impact on the taste and acceptability of the food. Plant-derived natural ingredients are generally considered safe and reliable, and extensive research has shown that certain plant extracts or specific components are effective salt substitutes, which can also give food additional health benefits. However, these plant-derived salt substitutes (PSS) have not been systematically recognized by the public and have not been well adopted in the food industry. Therefore, a comprehensive review of PSS, including its material basis, flavor characteristics, and taste mechanism is helpful for a deeper understanding of PSS, accelerating its research and development, and promoting its application.
Collapse
Affiliation(s)
- Yongzhao Bi
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kaina Qiao
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Jin Luo
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Xialei Liu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China; Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
2
|
Crowe-White KM, Baumler M, Gradwell E, Juturu V, White DA, Handu D. Application of Umami Tastants for Sodium Reduction in Food: An Evidence Analysis Center Scoping Review. J Acad Nutr Diet 2023; 123:1606-1620.e8. [PMID: 35940495 DOI: 10.1016/j.jand.2022.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 10/16/2022]
Abstract
BACKGROUND Sodium chloride intake far exceeds the guidelines from health and regulatory agencies. Acknowledging the positive relationship between sodium intake and blood pressure, interest in substances that assist in sodium reduction, while contributing a savory taste such as umami, are highly investigated. OBJECTIVE The objective of this scoping review was to identify and characterize studies investigating umami tastants on sodium reduction in food, with the goal of informing future research. METHODS A literature search was conducted in Ovid MEDLINE, Ovid Embase, Ovid Cochrane Database of Systematic Reviews, EBSCO PsycInfo, PROSPERO, National Institutes of Health RePORTER, ClinicalTrials.gov, and the World Health Organization International Clinical Trials Registry Platform and completed in March 2022 to identify peer-reviewed publications among adults (18 years and older) with interventions focusing on umami tastants to reduce sodium content. RESULTS The literature search identified 52 studies, among which monosodium glutamate was the most studied umami tastant or food. Furthermore, most of the research on umami was represented through cross-sectional sensory studies to determine acceptability of foods with part of the original sodium chloride replaced with umami tastants. Only 1 study investigated the use of an umami tastant on overall daily sodium intake. CONCLUSIONS To assist individuals in adhering to sodium reduction intake goals set forth by regulatory agencies and their guiding policies, these findings indicated that additional research on umami tastants, including systematic reviews and prospective trials, is warranted. In these prospective studies, both intermediate outcomes (ie, dietary pattern changes, daily dietary intake of sodium, and blood pressure) and hard outcomes (ie, incidence of hypertension or stroke, as well as cardiovascular composite outcomes) should be considered.
Collapse
Affiliation(s)
| | - Megan Baumler
- Department of Nutrition and Dietetics, St. Catherine University, St. Paul, Minnesota
| | | | - Vijaya Juturu
- Research & Development, LONZA CHI Inc, Morristown, New Jersey
| | | | - Deepa Handu
- Evidence Analysis Center, Academy of Nutrition and Dietetics, Chicago, Illinois.
| |
Collapse
|
3
|
Nuvoli C, Fillion L, Lacoste Gregorutti C, Labbe D. Comparison of sensitivity to taste and astringency stimuli among vegans and omnivores. Physiol Behav 2023; 262:114092. [PMID: 36682431 DOI: 10.1016/j.physbeh.2023.114092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Taste perception plays a crucial role in determining food choices. It has been described in literature a relationship between diet composition and taste perception. Nowadays, with the rising concern in climate change and animal welfare, the number of people following a vegan diet is increasing to become a real trend. Research about differences in taste perception between vegan and omnivore is lacking. The aim of the study was to compare detection threshold for bitter, sour, umami and astringency stimuli (quinine monohydrochloride dihydrate, citric acid anhydrous, monosodium glutamate and tannic acid, respectively) participants following a vegan diet (n=24) and participants following an omnivore diet (n=30). Participants reported their consumption frequency for main food categories. The mean detection thresholds between the two groups narrowly missed significance with p-values of 0.07, 0.08, 0.06, for bitter, umami and astringency perception, respectively. No differences were found for sour taste (p-value=0.33). Further research is required to validate such findings and to understand the origin of the relationship between diet style and taste sensitivity.
Collapse
Affiliation(s)
| | | | | | - David Labbe
- Société des Produits Nestlé SA, Switzerland.
| |
Collapse
|
4
|
Nakamura H, Kawashima T, Yamasaki L, Lwin KS, Eguchi A, Hayabuchi H, Tanoe Y, Tanaka S, Yoneoka D, Ghaznavi C, Uneyama H, Shibuya K, Nomura S. Reducing salt intake with umami: A secondary analysis of data in the UK National Diet and Nutrition Survey. Food Sci Nutr 2023; 11:872-882. [PMID: 36789077 PMCID: PMC9922145 DOI: 10.1002/fsn3.3121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 11/15/2022] Open
Abstract
Reducing sodium content in foods is an important public health measure to reduce salt intake and decrease the incidence of noncommunicable diseases, such as cardiovascular disease and chronic kidney disease. This study quantified the amount of salt intake that could potentially be reduced by using umami substances, including glutamate, inosinate, and guanylate, without compromising taste, for adults in the United Kingdom (UK). We used data comprised of 1834 adults aged 20 years and over from the National Diet and Nutrition Survey (NDNS RP) 2016/2017-2018/2019. Four hypothetical scenarios in which the market share of low-sodium foods accounts for 0%, 30%, 60%, or 90% of consumed products were considered in the analyses. Per capita daily salt intake corresponding to the NDNS RP food groups was calculated for each scenario, and the salt intake was aggregated by gender and age groups. Replacing salt with umami substances could help UK adults reduce daily salt intake by 9.09%-18.59% (9.21%-18.43% for women; 8.83%-19.43% for men), which is equivalent to 0.45-0.92 g/day of salt reduction (0.41-0.82 g/day for women; 0.50-1.10 g/day for men). The use of umami substances may serve as one method for the UK government to encourage salt intake reduction, particularly in the context of food product reformulation, as 80% of salt consumed in the country comes from processed foods. Empirical studies with sensory evaluation should be conducted to confirm consumer tolerance. The food industry should also be engaged in conversations regarding the addition of umami to food products in the United Kingdom.
Collapse
Affiliation(s)
| | - Takayuki Kawashima
- Department of Mathematical and Computing ScienceTokyo Institute of TechnologyTokyoJapan
| | - Lisa Yamasaki
- Department of Global Health Policy, Graduate School of MedicineThe University of TokyoTokyoJapan
- School of MedicineNagasaki UniversityNagasakiJapan
| | - Kaung Suu Lwin
- Department of Global Health Policy, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Akifumi Eguchi
- Centre for Preventive Medical SciencesChiba UniversityChibaJapan
| | - Hitomi Hayabuchi
- Graduate School of Health and Environmental SciencesFukuoka Women's UniversityFukuokaJapan
| | - Yuta Tanoe
- Institute for Business and FinanceWaseda UniversityTokyoJapan
| | - Shiori Tanaka
- Division of PreventionNational Cancer Center Institute for Cancer ControlTokyoJapan
| | - Daisuke Yoneoka
- Tokyo Foundation for Policy ResearchTokyoJapan
- Department of Global Health Policy, Graduate School of MedicineThe University of TokyoTokyoJapan
- Infectious Disease Surveillance Center at the National Institute of Infectious DiseasesTokyoJapan
| | - Cyrus Ghaznavi
- Department of Health Policy and Management, School of MedicineKeio UniversityTokyoJapan
- Medical Education ProgramWashington University School of Medicine in St. LouisSt. LouisMissouriUSA
| | | | | | - Shuhei Nomura
- Tokyo Foundation for Policy ResearchTokyoJapan
- Department of Global Health Policy, Graduate School of MedicineThe University of TokyoTokyoJapan
- Division of PreventionNational Cancer Center Institute for Cancer ControlTokyoJapan
- Department of Health Policy and Management, School of MedicineKeio UniversityTokyoJapan
| |
Collapse
|
5
|
Xie X, Dang Y, Pan Supervise D, Sun Supervise Y, Zhou Supervise C, He Supervise J, Gao X. The Enhancement and Mechanism of the Perception of Saltiness by Umami Peptide from Ruditapes Philippinarum and Ham. Food Chem 2022; 405:134886. [DOI: 10.1016/j.foodchem.2022.134886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022]
|
6
|
Diepeveen J, Moerdijk‐Poortvliet TCW, van der Leij FR. Molecular insights into human taste perception and umami tastants: A review. J Food Sci 2022; 87:1449-1465. [PMID: 35301715 PMCID: PMC9314127 DOI: 10.1111/1750-3841.16101] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 01/08/2023]
Abstract
Understanding taste is key for optimizing the palatability of seaweeds and other non-animal-based foods rich in protein. The lingual papillae in the mouth hold taste buds with taste receptors for the five gustatory taste qualities. Each taste bud contains three distinct cell types, of which Type II cells carry various G protein-coupled receptors that can detect sweet, bitter, or umami tastants, while type III cells detect sour, and likely salty stimuli. Upon ligand binding, receptor-linked intracellular heterotrimeric G proteins initiate a cascade of downstream events which activate the afferent nerve fibers for taste perception in the brain. The taste of amino acids depends on the hydrophobicity, size, charge, isoelectric point, chirality of the alpha carbon, and the functional groups on their side chains. The principal umami ingredient monosodium l-glutamate, broadly known as MSG, loses umami taste upon acetylation, esterification, or methylation, but is able to form flat configurations that bind well to the umami taste receptor. Ribonucleotides such as guanosine monophosphate and inosine monophosphate strongly enhance umami taste when l-glutamate is present. Ribonucleotides bind to the outer section of the venus flytrap domain of the receptor dimer and stabilize the closed conformation. Concentrations of glutamate, aspartate, arginate, and other compounds in food products may enhance saltiness and overall flavor. Umami ingredients may help to reduce the consumption of salts and fats in the general population and increase food consumption in the elderly.
Collapse
Affiliation(s)
- Johan Diepeveen
- Research Group Marine Biobased SpecialtiesChemistry Department, HZ University of Applied SciencesVlissingenThe Netherlands
| | | | - Feike R. van der Leij
- Research and Innovation Centre Agri, Food & Life Sciences (RIC‐AFL)Inholland University of Applied SciencesDelftThe Netherlands
| |
Collapse
|