1
|
Wang Y, Shen J, Zou B, Zhang L, Xu X, Wu C. Determination of the critical pH for unfolding water-soluble cod protein and its effect on encapsulation capacities. Food Res Int 2023; 174:113621. [PMID: 37986474 DOI: 10.1016/j.foodres.2023.113621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Hydrophobic polyphenols, with a variety of physiological activities, are often practically limited due to their low water solubility and chemical instability, among which curcumin (Cur) is a representative hydrophobic polyphenol. To improve Cur, the cod protein (CP)-Cur composite particles (CP-Cur) were successfully prepared using the pH-shift method, but this pH-shift method (7-12-7) required a higher pH, which limited application and increased cost. The critical pH of CP structure unfolding during pH-shift and its encapsulation effect on Cur were investigated in this paper. During the pH-shift process, the critical pH of the structural unfolding of CP was pH 10, and the degree of protein structure unfolding was higher, which was attributed to the increasing electrostatic repulsion, and the weakened hydrogen bond and hydrophobic interaction. The encapsulation efficiency of CP-Cur formed after pH 10-shift was higher than that formed after pH 9.8-shift, which increased by 22.17 %. At pH 9.8, the binding sites in CP reached saturation at the molar ratio of 10, while at pH 10 and 10.2, the binding sites in CP both reached saturation at the molar ratio of 14, also indicating that the protein treated with critical pH could bind more Cur. The binding between Cur and CP was mostly hydrophobic interaction, accompanied by hydrogen bonding and electrostatic interactions. The above results verified the necessity of critical pH in the experiment, indicating that critical pH could indeed improve the encapsulation effect and obtain a higher encapsulation efficiency. This work will help improve the large-scale application of hydrophobic functional substances in production.
Collapse
Affiliation(s)
- Yuying Wang
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian Minzu University, Ministry of Education, Dalian 116600, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Jing Shen
- Ningjin Market Supervision Administration, Dezhou 253400, China
| | - Bowen Zou
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Ling Zhang
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Xianbing Xu
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China
| | - Chao Wu
- College of Food Science, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Marine Food Processing and Safety Control, China; National Engineering Research Center of Seafood, China.
| |
Collapse
|
3
|
Self-assembly and Hydrogelation Properties of Peptides Derived from Peptic Cleavage of Aggregation-prone Regions of Ovalbumin. Gels 2022; 8:gels8100641. [PMID: 36286142 PMCID: PMC9601990 DOI: 10.3390/gels8100641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022] Open
Abstract
Egg white protein hydrolysate generated with pepsin was investigated for the presence of peptides with self-assembly and hydrogelation properties. Incubation of the hydrolysates for 16 h resulted in aggregates with significantly (p < 0.05) lower free amino nitrogen and sulfhydryl contents, and higher particle diameter and surface hydrophobicity compared to the hydrolysates. LC-MS/MS analysis of the aggregates resulted in identification of 429 ovalbumin-derived peptides, among which the top-six aggregation-prone peptides IFYCPIAIM, NIFYCPIAIM, VLVNAIVFKGL, YCPIAIMSA, MMYQIGLF, and VYSFSLASRL were predicted using AGGRESCAN by analysis of the aggregation “Hot Spots”. NIFYCPIAIM had the highest thioflavin T fluorescence intensity, particle diameter (5611.3 nm), and polydispersity index (1.0) after 24 h, suggesting the formation of β-sheet structures with heterogeneous particle size distribution. Transmission electron microscopy of MMYQIGLF, and VYSFSLASRL demonstrated the most favorable peptide self-assembly, based on the formation of densely packed, intertwined fibrils. Rheological studies confirmed the viscoelastic and mechanical properties of the hydrogels, with IFYCPIAIM, NIFYCPIAIM, VLVNAIVFKGL, and VYSFSLASRL forming elastic solid hydrogels (tan δ < 1), while YCPIAIMSA and MMYQIGLF formed viscous liquid-like hydrogels (tan δ > 1). The results provide valuable insight into the influence of peptide sequence on hydrogelation and self-assembly progression, and prospects of food peptides in biomaterial applications.
Collapse
|
4
|
Liu T, Zhao Y, Wu N, Chen S, Xu M, Du H, Yao Y, Tu Y. Egg white protein-based delivery system for bioactive substances: a review. Crit Rev Food Sci Nutr 2022; 64:617-637. [PMID: 35930299 DOI: 10.1080/10408398.2022.2107612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Some bioactive substances in food have problems such as poor solubility, unstable chemical properties and low bioavailability, which limits their application in functional food. Recently, many egg white protein-based delivery carriers have been developed to improve the chemical stability, biological activity and bioavailability of bioactive substances. This article reviewed the structure and properties of several major egg white proteins commonly used to construct bioactive substance delivery systems. Several common carrier types based on egg white proteins, including hydrogels, emulsions, micro/nanoparticles, aerogels and electrospinning were then introduced. The biological functions of common bioactive substances, the limitations, and the role of egg white protein-based delivery systems were also discussed. At present, whole egg white protein, ovalbumin and lysozyme are most widely used in delivery systems, while ovotransferrin, ovomucoid and ovomucin are less developed and applied. Egg white protein-based nanoparticles are currently the most commonly used delivery carriers. Egg white protein-based hydrogels, emulsions, and microparticles are also widely used. Future research on the application of various egg white proteins in developed new delivery systems will provide more choices for the delivery of various bioactive substances.
Collapse
Affiliation(s)
- Tiantian Liu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yan Zhao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Na Wu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Shuping Chen
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Mingsheng Xu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Huaying Du
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yao Yao
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yonggang Tu
- Jiangxi Key Laboratory of Natural Products and Functional Food, Jiangxi Agricultural University, Nanchang, China
- Agricultural Products Processing and Quality Control Engineering Laboratory of Jiangxi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Experimental Teaching Demonstration Center of Agricultural Products Storage and Processing Engineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|