1
|
McIntyre G, Jackson Z, Colina J, Sekhar S, DiFeo A. miR-181a: regulatory roles, cancer-associated signaling pathway disruptions, and therapeutic potential. Expert Opin Ther Targets 2024; 28:1061-1091. [PMID: 39648331 DOI: 10.1080/14728222.2024.2433687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION microRNA-181a (miR-181a) is a crucial post-transcriptional regulator of many mRNA transcripts and noncoding-RNAs, influencing cell proliferation, cancer cell stemness, apoptosis, and immune responses. Its abnormal expression is well-characterized in numerous cancers, establishing it as a significant genomic vulnerability and biomarker in cancer research. AREAS COVERED Here, we summarize miR-181a's correlation with poor patient outcomes across numerous cancers and the mechanisms governing miR-181a's activity and processing. We comprehensively describe miR-181a's involvement in multiple regulatory cancer signaling pathways, cellular processes, and the tumor microenvironment. We also discuss current therapeutic approaches to targeting miR-181a, highlighting their limitations and future potential. EXPERT OPINION miR-181a is a clinically relevant pan-cancer biomarker with potential as a therapeutic target. Its regulatory control of tumorigenic signaling pathways and immune responses positions it as a promising candidate for personalized treatments. The success of miR-181a as a target relies on the development of specific therapeutics platforms. Future research on miR-181a's role in the tumor microenvironment and the RNA binding proteins that regulate its stability will help uncover new techniques to targeting miR-181a. Further research into miR-181a serum levels in patients undergoing therapy will help to better stratify patients and enhance therapeutic success.
Collapse
Affiliation(s)
- Grace McIntyre
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Zoe Jackson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jose Colina
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Sreeja Sekhar
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Analisa DiFeo
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Zhou J, Zhang N, Zuo Y, Xu F, Cheng L, Fu Y, Yang F, Shu M, Zhou M, Zou W, Zhang S. Glutamine metabolism-related genes predict the prognostic risk of acute myeloid leukemia and stratify patients by subtype analysis. Hereditas 2024; 161:35. [PMID: 39300580 DOI: 10.1186/s41065-024-00338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a genetically heterogeneous disease in which glutamine (Gln) contributes to AML progression. Therefore, this study aimed to identify potential prognostic biomarkers for AML based on Gln metabolism-related genes. METHODS Gln-related genes that were differentially expressed between Cancer Genome Atlas-based AML and normal samples were analyzed using the limma package. Univariate, least absolute shrinkage, selection operators, and stepwise Cox regression analyses were used to identify prognostic signatures. Risk score-based prognostic and nomogram models were constructed to predict the prognostic risk of AML. Subsequently, consistent cluster analysis was performed to stratify patients into different subtypes, and subtype-related module genes were screened using weighted gene co-expression network analysis. RESULTS Through a series of regression analyses, HGF, ANGPTL3, MB, F2, CALR, EIF4EBP1, EPHX1, and PDHA1 were identified as potential prognostic biomarkers of AML. Prognostic and nomogram models constructed based on these genes could significantly differentiate between high- and low-risk AML with high predictive accuracy. The eight-signature also stratified patients with AML into two subtypes, among which Cluster 2 was prone to a high risk of AML prognosis. These two clusters exhibited different immune profiles. Of the subtype-related module genes, the HOXA and HOXB family genes may be genetic features of AML subtypes. CONCLUSION Eight Gln metabolism-related genes were identified as potential biomarkers of AML to predict prognostic risk. The molecular subtypes clustered by these genes enabled prognostic risk stratification.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China.
| | - Na Zhang
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Yan Zuo
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Feng Xu
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Lihua Cheng
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Yuanyuan Fu
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Fudong Yang
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Min Shu
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Mi Zhou
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Wenting Zou
- Department of Hematology, Deyang People's Hospital, No. 173 Taishan North Road, Section 1, Jingyang District, Deyang, 618000, Sichuan, China
| | - Shengming Zhang
- Department of health management, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong, China.
| |
Collapse
|
3
|
Zhang Y, Li K, Wang W, Han J. miR-381-3p attenuates doxorubicin resistance in human anaplastic thyroid carcinoma via targeting homeobox A9. Int J Exp Pathol 2021; 102:209-217. [PMID: 34719830 DOI: 10.1111/iep.12401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal microRNA (miR) expression has frequently been reported to be implicated in cancer-related drug resistance. Herein, we planned to investigate whether miR-381-3p contributes to doxorubicin (DOX) resistance in anaplastic thyroid carcinoma (ATC). DOX-resistant ATC tissues and cell lines were prepared to detect miR-381-3p and homeobox A9 (HOXA9) expression. CCK8, transwell and TUNEL assays were performed to evaluate cell proliferation, migration and invasion, and apoptosis in in vitro experiments. HOXA9 expression is intensively expressed in ATC tissues compared with benign thyroid tissues. Compared with parental ATC cell lines, HOXA9 protein expression is significantly up-regulated in DOX-resistant SW1736 and CAL62 cells. The knockdown of HOXA9 leads to growth inhibition and apoptosis of DOX-resistant SW1736 and CAL62 cells. Our results also indicate a significant decrease in miR-381-3p expression levels in DOX-resistant ATC tissues and cell lines. miR-381-3p may function as a tumour suppressor to impede proliferation, migration and invasion and induce apoptosis of DOX-resistant SW1736 and CAL62 cells by inhibiting HOXA9 protein expression. Our results present a novel signalling axis miR-381-3p/HOXA9 that mediates DOX resistance in ATC. miR-381-3p and HOXA9 may be promising molecular targets for preventing ATC progression and drug resistance.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Internal Medicine, The People Hospital of Huaiyin of Jinan, Jinan, China
| | - Ke Li
- Department of Head and Neck Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Weili Wang
- Department of Head and Neck Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingjing Han
- Department of Head and Neck Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
4
|
Moussa Agha D, Rouas R, Najar M, Bouhtit F, Naamane N, Fayyad-Kazan H, Bron D, Meuleman N, Lewalle P, Merimi M. Identification of Acute Myeloid Leukemia Bone Marrow Circulating MicroRNAs. Int J Mol Sci 2020; 21:7065. [PMID: 32992819 PMCID: PMC7583041 DOI: 10.3390/ijms21197065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND In addition to their roles in different biological processes, microRNAs in the tumor microenvironment appear to be potential diagnostic and prognostic biomarkers for various malignant diseases, including acute myeloid leukemia (AML). To date, no screening of circulating miRNAs has been carried out in the bone marrow compartment of AML. Accordingly, we investigated the circulating miRNA profile in AML bone marrow at diagnosis (AMLD) and first complete remission post treatment (AMLPT) in comparison to healthy donors (HD). METHODS Circulating miRNAs were isolated from AML bone marrow aspirations, and a low-density TaqMan miRNA array was performed to identify deregulated miRNAs followed by quantitative RT-PCR to validate the results. Bioinformatic analysis was conducted to evaluate the diagnostic and prognostic accuracy of the highly and significantly identified deregulated miRNA(s) as potential candidate biomarker(s). RESULTS We found several deregulated miRNAs between the AMLD vs. HD vs. AMLPT groups, which were involved in tumor progression and immune suppression pathways. We also identified significant diagnostic and prognostic signatures with the ability to predict AML patient treatment response. CONCLUSIONS This study provides a possible role of enriched circulating bone marrow miRNAs in the initiation and progression of AML and highlights new markers for prognosis and treatment monitoring.
Collapse
Affiliation(s)
- Douâa Moussa Agha
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Redouane Rouas
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Department of Medicine, University of Montreal, Montreal, QC H2X 0A9, Canada;
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Fatima Bouhtit
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Najib Naamane
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Hussein Fayyad-Kazan
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Dominique Bron
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Nathalie Meuleman
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
| | - Makram Merimi
- Laboratory of Experimental Hematology, Department of Haematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000 Brussels, Belgium; (D.M.A.); (R.R.); (F.B.); (H.F.-K.); (D.B.); (P.L.)
- Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| |
Collapse
|