1
|
Yu M, Chen J, Wang L, Huang Y, Xie H, Bian Y, Chen F. Engineering pedicled vascularized bladder tissue for functional bladder defect repair. Bioeng Transl Med 2023; 8:e10440. [PMID: 37693061 PMCID: PMC10487332 DOI: 10.1002/btm2.10440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
An engineered bladder construct that mimics the structural and functional characteristics of native bladder is a promising therapeutic option for bladder substitution. We previously showed that pedicled vascularized smooth muscle tissue fabricated by grafting smooth muscle cell (SMC) sheets onto an axial capsule vascular bed had the potential for reliable bladder reconstruction. In this study, we investigated the feasibility of buccal mucosa graft (BMG) integration with the pedicled vascularized smooth muscle tissue to generate a full-layer pedicled vascularized bladder construct. BMG transplanted onto vascularized smooth muscle tissue showed good survival and developed into a pedicled vascularized bladder construct with full-layer structures, appropriate thickness, abundant vascularization, and effective barrier function. Then the full-thickness bladder defects were, respectively, reconstructed by pedicled capsule tissue (pedicled capsule group), nonpedicled vascularized bladder construct (nonpedicled construct group), and pedicled vascularized bladder construct (pedicled construct group). The picrosirius red (PSR) staining and immunohistochemistry results showed minimal fibrosis, maximal smooth muscle proportion, and high vascular density in the pedicled construct group. A continuous mucosal layer was observed only in the pedicled construct group. Moreover, morphological and functional studies revealed better bladder compliance and good ductility in the pedicled construct group. Overall, these results suggested that the BMG could be well integrated with vascularized smooth muscle tissue and generated a pedicled, fully vascularized, and structurally organized bladder construct, which facilitated structural remodeling and functional recovery and could become an alternative to bladder reconstruction.
Collapse
Affiliation(s)
- Mingming Yu
- Department of UrologyShanghai Children's Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Department of UrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
- Shanghai Eastern Urological Reconstruction and Repair InstituteShanghaiChina
| | - Jiasheng Chen
- Department of UrologyShanghai Children's Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Department of UrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
- Shanghai Eastern Urological Reconstruction and Repair InstituteShanghaiChina
| | - Lin Wang
- Department of UrologyShanghai Children's Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Department of UrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
- Shanghai Eastern Urological Reconstruction and Repair InstituteShanghaiChina
| | - Yichen Huang
- Department of UrologyShanghai Children's Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Hua Xie
- Department of UrologyShanghai Children's Hospital, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yu Bian
- Department of Ultrasound in MedicineShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
| | - Fang Chen
- Department of UrologyShanghai Children's Hospital, Shanghai Jiao Tong UniversityShanghaiChina
- Department of UrologyShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghaiChina
- Shanghai Eastern Urological Reconstruction and Repair InstituteShanghaiChina
| |
Collapse
|
2
|
Jafari NV, Rohn JL. An immunoresponsive three-dimensional urine-tolerant human urothelial model to study urinary tract infection. Front Cell Infect Microbiol 2023; 13:1128132. [PMID: 37051302 PMCID: PMC10083561 DOI: 10.3389/fcimb.2023.1128132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
IntroductionMurine models of urinary tract infection (UTI) have improved our understanding of host-pathogen interactions. However, given differences between rodent and human bladders which may modulate host and bacterial response, including certain biomarkers, urothelial thickness and the concentration of urine, the development of new human-based models is important to complement mouse studies and to provide a more complete picture of UTI in patients.MethodsWe originally developed a human urothelial three-dimensional (3D) model which was urine tolerant and demonstrated several urothelial biomarkers, but it only achieved human thickness in heterogenous, multi-layered zones and did not demonstrate the comprehensive differentiation status needed to achieve barrier function. We optimised this model by altering a variety of conditions and validated it with microscopy, flow cytometry, transepithelial electrical resistance and FITC-dextran permeability assays to confirm tissue architecture, barrier integrity and response to bacterial infection.ResultsWe achieved an improved 3D urine-tolerant human urothelial model (3D-UHU), which after 18-20 days of growth, stratified uniformly to 7-8 layers comprised of the three expected, distinct human cell types. The apical surface differentiated into large, CD227+ umbrella-like cells expressing uroplakin-1A, II, III, and cytokeratin 20, all of which are important terminal differentiation markers, and a glycosaminoglycan layer. Below this layer, several layers of intermediate cells were present, with a single underlying layer of CD271+ basal cells. The apical surface also expressed E-cadherin, ZO-1, claudin-1 and -3, and the model possessed good barrier function. Infection with both Gram-negative and Gram-positive bacterial classes elicited elevated levels of pro-inflammatory cytokines and chemokines characteristic of urinary tract infection in humans and caused a decrease in barrier function.DiscussionTaken together, 3D-UHU holds promise for studying host-pathogen interactions and host urothelial immune response.
Collapse
|
3
|
Jafari NV, Rohn JL. The urothelium: a multi-faceted barrier against a harsh environment. Mucosal Immunol 2022; 15:1127-1142. [PMID: 36180582 PMCID: PMC9705259 DOI: 10.1038/s41385-022-00565-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 02/04/2023]
Abstract
All mucosal surfaces must deal with the challenge of exposure to the outside world. The urothelium is a highly specialized layer of stratified epithelial cells lining the inner surface of the urinary bladder, a gruelling environment involving significant stretch forces, osmotic and hydrostatic pressures, toxic substances, and microbial invasion. The urinary bladder plays an important barrier role and allows the accommodation and expulsion of large volumes of urine without permitting urine components to diffuse across. The urothelium is made up of three cell types, basal, intermediate, and umbrella cells, whose specialized functions aid in the bladder's mission. In this review, we summarize the recent insights into urothelial structure, function, development, regeneration, and in particular the role of umbrella cells in barrier formation and maintenance. We briefly review diseases which involve the bladder and discuss current human urothelial in vitro models as a complement to traditional animal studies.
Collapse
Affiliation(s)
- Nazila V Jafari
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK
| | - Jennifer L Rohn
- Department of Renal Medicine, Division of Medicine, University College London, Royal Free Hospital Campus, London, UK.
| |
Collapse
|
4
|
Garzón I, Jaimes-Parra BD, Pascual-Geler M, Cózar JM, Sánchez-Quevedo MDC, Mosquera-Pacheco MA, Sánchez-Montesinos I, Fernández-Valadés R, Campos F, Alaminos M. Biofabrication of a Tubular Model of Human Urothelial Mucosa Using Human Wharton Jelly Mesenchymal Stromal Cells. Polymers (Basel) 2021; 13:1568. [PMID: 34068343 PMCID: PMC8153323 DOI: 10.3390/polym13101568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 12/22/2022] Open
Abstract
Several models of bioartificial human urothelial mucosa (UM) have been described recently. In this study, we generated novel tubularized UM substitutes using alternative sources of cells. Nanostructured fibrin-agarose biomaterials containing fibroblasts isolated from the human ureter were used as stroma substitutes. Then, human Wharton jelly mesenchymal stromal cells (HWJSC) were used to generate an epithelial-like layer on top. Three differentiation media were used for 7 and 14 days. Results showed that the biofabrication methods used here succeeded in generating a tubular structure consisting of a stromal substitute with a stratified epithelial-like layer on top, especially using a medium containing epithelial growth and differentiation factors (EM), although differentiation was not complete. At the functional level, UM substitutes were able to synthesize collagen fibers, proteoglycans and glycosaminoglycans, although the levels of control UM were not reached ex vivo. Epithelial differentiation was partially achieved, especially with EM after 14 days of development, with expression of keratins 7, 8, and 13 and pancytokeratin, desmoplakin, tight-junction protein-1, and uroplakin 2, although at lower levels than controls. These results confirm the partial urothelial differentiative potential of HWJSC and suggest that the biofabrication methods explored here were able to generate a potential substitute of the human UM for future clinical use.
Collapse
Affiliation(s)
- Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
| | - Boris Damián Jaimes-Parra
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Department of Histology, Faculty of Health Sciences, University Autónoma de Bucaramanga, 680003 Santander, Colombia
| | | | - José Manuel Cózar
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
- Division of Urology, University Hospital Virgen de las Nieves, 18014 Granada, Spain;
| | - María del Carmen Sánchez-Quevedo
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
| | | | - Indalecio Sánchez-Montesinos
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain
| | - Ricardo Fernández-Valadés
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
- Division of Pediatric Surgery, University Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; (I.G.); (B.D.J.-P.); (M.d.C.S.-Q.); (M.A.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; (J.M.C.); (I.S.-M.); (R.F.-V.)
| |
Collapse
|
5
|
Campos F, Bonhome-Espinosa AB, Vizcaino G, Rodriguez IA, Duran-Herrera D, López-López MT, Sánchez-Montesinos I, Alaminos M, Sánchez-Quevedo MC, Carriel V. Generation of genipin cross-linked fibrin-agarose hydrogel tissue-like models for tissue engineering applications. ACTA ACUST UNITED AC 2018; 13:025021. [PMID: 29420310 DOI: 10.1088/1748-605x/aa9ad2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The generation of biomimetic and biocompatible artificial tissues is the basic research objective for tissue engineering (TE). In this sense, the biofabrication of scaffolds that resemble the tissues' extracellular matrix is an essential aim in this field. Uncompressed and nanostructured fibrin-agarose hydrogels (FAH and NFAH, respectively) have emerged as promising scaffolds in TE, but their structure and biomechanical properties must be improved in order to broaden their TE applications. Here, we generated and characterized novel membrane-like models with increased structural and biomechanical properties based on the chemical cross-linking of FAH and NFAH with genipin (GP at 0.1%, 0.25%, 0.5% and 0.75%). Furthermore, the scaffolds were subjected to rheological (G, G', G″ modulus), ultrastructural and ex vivo biocompatibility analyses. Results showed that all GP concentrations increased the stiffness (G) and especially the elasticity (G') of FAH and NFAH. Ultrastructural analyses demonstrated that GP and nanostructuration of FAH allowed us to control the porosity of FAH. In addition, biological studies revealed that higher concentration of GP (0.75%) started to compromise the cell function and viability. Finally, this study demonstrated the possibility to generate natural and biocompatible FAH and NFAH with improved structural and biomechanical properties by using 0.1%-0.5% of GP. However, further in vivo studies are needed in order to demonstrate the biocompatibility, biodegradability and regeneration capability of these cross-linked scaffolds.
Collapse
Affiliation(s)
- Fernando Campos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria Ibs.GRANADA, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sa G, Xiong X, Ren J, Wang J, Xia H, Liu Z, He S, Zhao Y. KGF Enhances Oral Epithelial Adhesion and Rete Peg Elongation via Integrins. J Dent Res 2017; 96:1546-1554. [PMID: 28732179 DOI: 10.1177/0022034517720360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- G.L. Sa
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - X.P. Xiong
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J.G. Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J.Y. Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H.F. Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z.K. Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - S.G. He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y.F. Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|