1
|
Zhang Y, Yu Y, Qian M, Gui W, Shah AZ, Xu G, Yang G. Characterization and functional analysis of an α-adrenergic-like octopamine receptor in the small brown planthopper Laodelphax striatellus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105509. [PMID: 37532362 DOI: 10.1016/j.pestbp.2023.105509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 08/04/2023]
Abstract
As an important biogenic amine in invertebrates and corresponding to the neurotransmitter norepinephrine in vertebrates, octopamine (OA) regulates diverse physiological and behavioral processes by binding to specific octopamine receptors (OARs) in invertebrates. At present, OARs have been identified and characterized in several insects. However, less is known about the OARs of Laodelphax striatellus, one of the most destructive pests in East Asian rice fields. In the present study, an α1-adrenergic-like OAR (LsOA1) from L. striatellus was cloned. LsOA1 has the typical characteristics of G-protein coupled receptors and is clustered with other insect homologs. The transcript level of LsOA1 varied in various stages and tissues, and was highly expressed at the egg stage and in the brain. Silencing of LsOA1 causes a reduction in vitellogenin (LsVg) and vitellogenin receptor (LsVgR) expression. Although LsOA1 interference did not affect the fecundity and survival of L. striatellus, the hatching rate of L. striatellus was significantly reduced, and the hatching period was prolonged. The decrease in the amount of honeydew excreted after silencing LsOA1 indicates that LsOA1 may be involved in regulating the feeding behavior of L. striatellus. In addition, the interference of LsOA1 significantly reduced the expression of capsid protein (CP) and viral RNA3 segment (RNA3) in rice stripe virus (RSV)-viruliferous L. striatellus, but did not affect the vertical transmission rate of RSV. The present study demonstrated that LsOA1 played a crucial role in the physiological and behavioral processes of L. striatellus, which will provide the basis for developing a new target gene for pest control.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Youxin Yu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Mingshi Qian
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wei Gui
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Amir Zaman Shah
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Gang Xu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China.
| | - Guoqing Yang
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Rohrbach EW, Knapp EM, Deshpande SA, Krantz DE. Drosophila cells that express octopamine receptors can either inhibit or promote oviposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539296. [PMID: 37205438 PMCID: PMC10187210 DOI: 10.1101/2023.05.03.539296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adrenergic signaling is known to play a critical role in regulating female reproductive processes in both mammals and insects. In Drosophila , the ortholog of noradrenaline, octopamine (Oa), is required for ovulation as well as several other female reproductive processes. Loss of function studies using mutant alleles of receptors, transporters, and biosynthetic enzymes for Oa have led to a model in which disruption of octopaminergic pathways reduces egg laying. However, neither the complete expression pattern in the reproductive tract nor the role of most octopamine receptors in oviposition is known. We show that all six known Oa receptors are expressed in peripheral neurons at multiple sites within in the female fly reproductive tract as well as in non-neuronal cells within the sperm storage organs. The complex pattern of Oa receptor expression in the reproductive tract suggests the potential for influencing multiple regulatory pathways, including those known to inhibit egg-laying in unmated flies. Indeed, activation of some neurons that express Oa receptors inhibits oviposition, and neurons that express different subtypes of Oa receptor can affect different stages of egg laying. Stimulation of some Oa receptor expressing neurons (OaRNs) also induces contractions in lateral oviduct muscle and activation of non-neuronal cells in the sperm storage organs by Oa generates OAMB-dependent intracellular calcium release. Our results are consistent with a model in which adrenergic pathways play a variety of complex roles in the fly reproductive tract that includes both the stimulation and inhibition of oviposition.
Collapse
|
3
|
Wang S, Tang H, Huang W, Liu X, Hou W, Cesar Piñero J, Peng X, Chen M. Octopamine receptor genes are involved in the starvation response of Rhopalosiphum padi (Hemiptera: Aphididae). INSECT MOLECULAR BIOLOGY 2022; 31:471-481. [PMID: 35312201 DOI: 10.1111/imb.12773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/07/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Insect octopamine (OA) receptors are G-protein coupled receptors (GPCRs) that play essential roles in physiological and behavioural processes. However, there is little information about the function of OA receptors in the aphids' response to stress. From the genome sequence of Rhopalosiphum padi genome sequence, a cosmopolitan cereal pest, we identified six OA receptor genes RpOAMB, RpOctR, RpOctβ1R, RpOctβ2R, RpOctβ3R, RpOctR-like with two, one, one, four, four, seven exons, respectively. All the OA receptors contain seven transmembrane domains, which were the signature of GPCRs. Our results showed that (1) the contents of OA increased significantly after food starvation, (2) the transcription levels of RpOAMB, RpOctR, RpOctβ2R and RpOctβ3R increased after starvation and were restored after re-feeding, and (3) the expression levels of these four genes decreased significantly 48 h post-injection of dsRNA that targeted the respective genes. Knockdown of RpOctR, RpOctβ2R or RpOctβ3R genes significantly increased aphid mortality under 24 h starvation conditions. Mortality of R. padi injected with dsRpOctR or dsRpOctβ2R was significantly higher than control under 48 h starvation treatments. This is the first report on the role of OA receptors in the starvation response of aphids. The current study provides knowledge for a better understanding the physiological roles of insect OA receptors.
Collapse
Affiliation(s)
- Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongcheng Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenjie Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhua Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Jaime Cesar Piñero
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts, USA
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Kong X, Li ZX, Gao YQ, Liu FH, Chen ZZ, Tian HG, Liu TX, Xu YY, Kang ZW. Genome-Wide Identification of Neuropeptides and Their Receptors in an Aphid Endoparasitoid Wasp, Aphidius gifuensi. INSECTS 2021; 12:insects12080745. [PMID: 34442310 PMCID: PMC8397052 DOI: 10.3390/insects12080745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
In insects, neuropeptides and their receptors not only play a critical role in insect physiology and behavior but also are the potential targets for novel pesticide discoveries. Aphidius gifuensis is one of the most important and widespread aphid parasitoids, and has been successfully used to control aphid. In the present work, we systematically identified neuropeptides and their receptors from the genome and head transcriptome of A. gifuensis. A total of 35 neuropeptide precursors and 49 corresponding receptors were identified. The phylogenetic analyses demonstrated that 35 of these receptors belong to family-A, four belong to family-B, two belong to leucine-rich repeat-containing GPCRs, four belong to receptor guanylyl cyclases, and four belong to receptor tyrosine kinases. Oral ingestion of imidacloprid significantly up-regulated five neuropeptide precursors and four receptors whereas three neuropeptide precursors and eight receptors were significantly down-regulated, which indicated that these neuropeptides and their receptors are potential targets of some commercial insecticides. The RT-qPCR results showed that dopamine receptor 1, dopamine receptor 2, octopamine receptor, allatostatin-A receptor, neuropeptides capa receptor, SIFamide receptor, FMRFamide receptor, tyramine receptor and short neuropeptide F predominantly were expressed in the head whilst the expression of ion transport peptide showed widespread distribution in various tissues. The high expression levels of these genes suggest their important roles in the central nervous system. Taken together, our study provides fundamental information that may further our understanding of neuropeptidergic signaling systems in the regulation of the physiology and behavior of solitary wasps. Furthermore, this information could also aid in the design and discovery of specific and environment-friendly insecticides.
Collapse
Affiliation(s)
- Xue Kong
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Zhen-Xiang Li
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Yu-Qing Gao
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Fang-Hua Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Zhen-Zhen Chen
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for the Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling 712100, China;
| | - Tong-Xian Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China;
| | - Yong-Yu Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
- Correspondence: (Y.-Y.X.); (Z.-W.K.)
| | - Zhi-Wei Kang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (X.K.); (Z.-X.L.); (Y.-Q.G.); (F.-H.L.); (Z.-Z.C.)
- State Key Laboratory of Crop Stress Biology for the Arid Areas, Key Laboratory of Northwest Loess Plateau Crop Pest Management of Ministry of Agriculture, Northwest A&F University, Yangling 712100, China;
- Correspondence: (Y.-Y.X.); (Z.-W.K.)
| |
Collapse
|
5
|
Alcalde J, Munk M, González-Muñoz M, Panina S, Berchtold MW, Villalobo A. Calmodulin downregulation in conditional knockout HeLa cells inhibits cell migration. Arch Biochem Biophys 2020; 697:108680. [PMID: 33220265 DOI: 10.1016/j.abb.2020.108680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
The study of calmodulin (CaM) functions in living cells has been tackled up to date using cell-permeant CaM inhibitors or interference-RNA methods. CaM inhibitors may lack specificity and the siRNA interference approach is challenging, as all three CaM genes expressing an identical protein in mammals have to be blocked. Therefore, we recently introduced a novel genetic system using CRISPR/Cas9-mediated gene deletion and conditional CaM expression to study the function of CaM in HeLa cells. Here, we describe the effect of CaM downregulation on the basal and epidermal growth factor (EGF)-dependent 2D- and 3D-migration in HeLa cells. CaM downregulation inhibited cell migration on a 2D-surface in the absence but not in the presence of EGF. In contrast, CaM downregulation led to inhibition of 3D-migration across a porous membrane both in the absence and presence of EGF. CaM downregulation decreased the expression of Rac1, Cdc42 and RhoA, all known to play crucial roles in cell migration. These results show that EGF-dependent 2D- and 3D-migration utilize distinct CaM-regulated systems and identify several essential migratory proteins directly or indirectly regulated by CaM.
Collapse
Affiliation(s)
- Juan Alcalde
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100, Copenhagen Ø, Denmark; Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Mads Munk
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100, Copenhagen Ø, Denmark
| | - María González-Muñoz
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Svetlana Panina
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100, Copenhagen Ø, Denmark
| | - Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100, Copenhagen Ø, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain; Cancer and Human Molecular Genetics Area - Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046, Madrid, Spain.
| |
Collapse
|
6
|
Avilès A, Cordeiro A, Maria A, Bozzolan F, Boulogne I, Dacher M, Goutte A, Alliot F, Maibeche M, Massot M, Siaussat D. Effects of DEHP on the ecdysteroid pathway, sexual behavior and offspring of the moth Spodoptera littoralis. Horm Behav 2020; 125:104808. [PMID: 32628962 DOI: 10.1016/j.yhbeh.2020.104808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/28/2022]
Abstract
Bis(2-ethylhexyl) phthalate (DEHP) is a widely produced plasticizer that is considered to act as an endocrine-disrupting chemical in vertebrates and invertebrates. Indeed, many studies have shown that DEHP alters hormonal levels, reproduction and behavior in vertebrates. Few studies have focused on the effects of DEHP on insects, although DEHP is found almost everywhere in their natural habitats, particularly in soils and plants. Here, we investigated the effects of DEHP on the sexual behavior and physiology of a pest insect, the noctuid moth Spodoptera littoralis. In this nocturnal species, olfaction is crucial for sexual behavior, and ecdysteroids at the antennal level have been shown to modulate sex pheromone detection by males. In the present study, larvae were fed food containing different DEHP concentrations, and DEHP concentrations were then measured in the adults (males and females). Hemolymphatic ecdysteroid concentrations, the antennal expression of genes involved in the ecdysteroid pathway (nuclear receptors EcR, USP, E75, and E78 and calmodulin) and sexual behavior were then investigated in adult males. The success and latency of mating as well as the hatching success were also studied in pairs consisting of one DEHP male and one uncontaminated female or one DEHP female and one uncontaminated male. We also studied the offspring produced from pairs involving contaminated females to test the transgenerational effect of DEHP. Our results showed the general downregulation of nuclear receptors and calmodulin gene expression associated with the higher concentrations of DEHP, suggesting peripheral olfactory disruption. We found some effects on male behavior but without an alteration of the mating rate. Effects on offspring mortality and developmental rates in the N + 1 generation were also found at the higher doses of DEHP. Taken together, the results of the study show for the first time that larval exposure to DEHP can induce delayed endocrine-disruptive effects in the adults of a terrestrial insect as well as effects on the next generation. To date, our study is also the first description of an impact of endocrine disrupter on olfaction in insects.
Collapse
Affiliation(s)
- Amandine Avilès
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France
| | - Alexandra Cordeiro
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France
| | - Annick Maria
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France
| | - Françoise Bozzolan
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France
| | - Isabelle Boulogne
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France; UPRES-EA 4358 GlycoMev, Université de Rouen, Rouen, France
| | - Matthieu Dacher
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France; Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Centre INRA, Bâtiment 1, Route de Saint Cyr, 78026 Versailles cedex, Versailles, France
| | - Aurélie Goutte
- École Pratique des Hautes Études (EPHE), PSL. UMR 7619 METIS, Université Pierre et Marie Curie (UPMC) - Sorbonne Universités, Paris, France
| | - Fabrice Alliot
- École Pratique des Hautes Études (EPHE), PSL. UMR 7619 METIS, Université Pierre et Marie Curie (UPMC) - Sorbonne Universités, Paris, France
| | - Martine Maibeche
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France
| | - Manuel Massot
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France
| | - David Siaussat
- Sorbonne Université - Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris) - Département d'Écologie Sensorielle, Campus Pierre et Marie Curie (UPMC), 75252 Paris Cedex 05, France.
| |
Collapse
|
7
|
Yadav C, Smith ML, Yack JE. Transcriptome analysis of a social caterpillar, Drepana arcuata: De novo assembly, functional annotation and developmental analysis. PLoS One 2020; 15:e0234903. [PMID: 32569288 PMCID: PMC7307738 DOI: 10.1371/journal.pone.0234903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
The masked birch caterpillar, Drepana arcuata, provides an excellent opportunity to study mechanisms mediating developmental changes in social behaviour. Larvae transition from being social to solitary during the 3rd instar, concomitant with shifts in their use of acoustic communication. In this study we characterize the transcriptome of D. arcuata to initiate sociogenomic research of this lepidopteran insect. We assembled and annotated the combined larval transcriptome of “social” early and “solitary” late instars using next generation Illumina sequencing, and used this transcriptome to conduct differential gene expression analysis of the two behavioural phenotypes. A total of 211,012,294 reads generated by RNA sequencing were assembled into 231,348 transcripts and 116,079 unigenes for the functional annotation of the transcriptome. Expression analysis revealed 3300 transcripts that were differentially expressed between early and late instars, with a large proportion associated with development and metabolic processes. We independently validated differential expression patterns of selected transcripts using RT-qPCR. The expression profiles of social and solitary larvae revealed differentially expressed transcripts coding for gene products that have been previously reported to influence social behaviour in other insects (e.g. cGMP- and cAMP- dependent kinases, and bioamine receptors). This study provides the first transcriptomic resources for a lepidopteran species belonging to the superfamily Drepanoidea, and gives insight into genetic factors mediating grouping behaviour in insects.
Collapse
Affiliation(s)
- Chanchal Yadav
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Myron L. Smith
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jayne E. Yack
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
8
|
Ma Z, Guo X, Liu J. Translocator protein mediates olfactory repulsion. FASEB J 2020; 34:513-524. [PMID: 31914587 DOI: 10.1096/fj.201900528rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 11/11/2022]
Abstract
Translocator protein (TSPO, 18kDa), which was previously known as a peripheral-type benzodiazepine receptor, is associated with psychiatric disorders and acts as a neuroimaging biomarker. However, its function and mechanism in modulating behaviors are less well-known. Herein, we found that TSPO in migratory locusts shows conserved protein traits and is expressed at high levels in the brains. The expression levels of tspo mRNA and protein were higher in brains of solitary locusts than those in gregarious locusts, whereas the mRNA and protein expression levels remained stable during crowding and isolation, suggesting that the expression level of TSPO is potentially associated with behavioral phenotype of solitary locusts. Moreover, tspo RNAi knockdown in the brains of solitary locusts decreased their olfactory repulsion. After RNAi knockdown of tyramine receptor (TyR) in the brains of solitary locusts, RNA-seq analysis identified that a functional class of receptors, which included tspo, was downregulated significantly. Moreover, tspo mRNA and protein expression levels were downregulated and upregulated after TyR RNAi knockdown and activation, respectively. tspo RNAi knockdown in the brains of solitary locusts induced the attractive response and inhibited the function of tyramine (TA)-TyR in inducing olfactory repulsion. In gregarious locusts, tspo RNAi knockdown inhibited the function of TA-TyR inducing olfactory repulsion. This study confirms that TSPO acts as a crucial effector protein in TA-TyR signaling to modulate olfactory repulsion. Furthermore, this study provides a novel mechanism by which TSPO functionally connects a G-protein-coupled receptor and a mitochondria membrane protein in modulating olfactory repulsion.
Collapse
Affiliation(s)
- Zongyuan Ma
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xiaojiao Guo
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Jipeng Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Ma Z, Liu J. Retinoid X receptor modulates olfactory attraction through Gα signaling in the migratory locusts. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103265. [PMID: 31704156 DOI: 10.1016/j.ibmb.2019.103265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/17/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Animals communicate with each other in aggregating for survival and adaptation. Solitary locusts show an olfactory transition from repulsion to attraction in aggregation. However, the molecular mechanism underlying this transition is less well known. In this study, we explored differentially expressed transcripts (DETs) during locust aggregation and identified that a functional class of general metabolism encompassed the largest number of DETs among all analyzed gene classes. Within this functional class of general metabolism, oxidoreductase mediates synthesis of retinoic acid (RA) from vitamin A and other metabolites derived from carbohydrates. The expression levels of retinaldehyde hydroxylase 1 (raldh1) and retinoid X receptor (rxr), which are two crucial genes for RA synthesis and signaling, were upregulated during 4 h of crowding. Knockdown of raldh1 and rxr by RNA interference (RNAi) in the brains resulted in the loss of olfactory attraction. Moreover, inhibition of RXR by RNAi resulted in downregulated expression of Gna14, a member of the Gα subfamily that transduces signals in G protein-coupled receptor (GPCR) pathways. Abrogating RXR signaling and Gna14 by RNAi knockdown inhibited the function of dopamine receptor 1 (DopR1) and octopamine receptor α1 (OctαR1) in modulating olfactory attraction. RXR signaling is essential for DopR1 and OctαR1 to mediate olfactory attraction. This study showed that RXR signaling mediates attraction by Gα signaling and confirmed a novel link between nuclear receptor RXR and the membrane receptor GPCRs in modulating olfactory attraction.
Collapse
Affiliation(s)
- Zongyuan Ma
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jipeng Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
10
|
Ma Z, Liu J, Guo X. A retinal-binding protein mediates olfactory attraction in the migratory locusts. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 114:103214. [PMID: 31442488 DOI: 10.1016/j.ibmb.2019.103214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Cellular retinaldehyde-binding protein (CRALBP) is abundantly expressed in retina and its mutations are associated with visual impairments. The functions of CRALBP are less known in extra retinal tissues. Herein, we study the function of CRALBP in modulating olfactory behaviors in gregarious and solitary locusts. The expressions of cralbp mRNA and protein were enriched in locust brains and antennae. RNAi knockdown of cralbp in gregarious locusts decreased their attractive response to gregarious volatiles. RNA-seq and quantitative PCR confirmed that cralbp mRNA and protein expression levels were upregulated and downregulated after octopamine receptor α1 (OctαR1) activation and inhibition, respectively. Gene network analysis revealed that cralbp is the core hub gene in the interactive network among differentially expressed transcripts (DETs) resulting from activating and inhibiting OctαR1. Moreover, cralbp RNAi knockdown inhibited the induction of olfactory attraction by octopamine (OA)-OctαR1 signaling. CRALBP helped to transmit OA signals to mediate olfactory attraction response to guaiacol and veratrole, which are two odorant components in gregarious volatiles. This study suggested that CRALBP may act as a novel effector protein in OctαR1 signaling to mediate olfactory attraction. This study indicated that CRALBP modulates olfactory attraction in extra retina tissues and retinaldehyde metabolism may be crucial for olfactory attraction modulation.
Collapse
Affiliation(s)
- Zongyuan Ma
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.
| | - Jipeng Liu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Xiaojiao Guo
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Hewlett SE, Delahunt Smoleniec JD, Wareham DM, Pyne TM, Barron AB. Biogenic amine modulation of honey bee sociability and nestmate affiliation. PLoS One 2018; 13:e0205686. [PMID: 30359390 PMCID: PMC6201892 DOI: 10.1371/journal.pone.0205686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/28/2018] [Indexed: 11/18/2022] Open
Abstract
Biogenic amines modulate a range of social behaviours, including sociability and mechanisms of group cohesion, in both vertebrates and invertebrates. Here, we tested if the biogenic amines modulate honey bee (Apis mellifera) sociability and nestmate affiliation. We examined the consequences of treatments with biogenic amines, agonists and antagonists on a bee’s approach to, and subsequent social interactions with, conspecifics in both naturally hive-reared bees and isolated bees. We used two different treatment methods. Bees were first treated topically with compounds dissolved in the solvent dimethylformamide (dMF) applied to the dorsal thorax, but dMF had a significant effect on the locomotion and behaviour of the bees during the behavioural test that interfered with their social responses. Our second method used microinjection to deliver biogenic amines to the head capsule via the ocellar tract. Microinjection of dopamine and a dopamine antagonist had strong effects on bee sociability, likelihood of interaction with bees, and nestmate affiliation. Octopamine treatment reduced social interaction with other bees, and serotonin increased the likelihood of social interactions. HPLC measurements showed that isolation reduced brain levels of biogenic amines compared to hive-reared bees. Our findings suggest that dopamine is an important neurochemical component of social motivation in bees. This finding advances a comparative understanding of the processes of social evolution.
Collapse
Affiliation(s)
- Susie E. Hewlett
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- * E-mail: (SH); (AB)
| | | | - Deborah M. Wareham
- Department of Health Professions, Macquarie University, Sydney, New South Wales, Australia
| | - Thomas M. Pyne
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Andrew B. Barron
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- * E-mail: (SH); (AB)
| |
Collapse
|
12
|
Xu L, Jiang HB, Chen XF, Xiong Y, Lu XP, Pei YX, Smagghe G, Wang JJ. How Tyramine β-Hydroxylase Controls the Production of Octopamine, Modulating the Mobility of Beetles. Int J Mol Sci 2018; 19:E846. [PMID: 29538302 PMCID: PMC5877707 DOI: 10.3390/ijms19030846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/04/2018] [Accepted: 03/09/2018] [Indexed: 11/17/2022] Open
Abstract
Biogenic amines perform many kinds of important physiological functions in the central nervous system (CNS) of insects, acting as neuromodulators, neurotransmitters, and neurohormones. The five most abundant types of biogenic amines in invertebrates are dopamine, histamine, serotonin, tyramine, and octopamine (OA). However, in beetles, an important group of model and pest insects, the role of tyramine β-hydroxylase (TβH) in the OA biosynthesis pathway and the regulation of behavior remains unknown so far. We therefore investigated the molecular characterization and spatiotemporal expression profiles of TβH in red flour beetles (Triboliun castaneum). Most importantly, we detected the production of OA and measured the crawling speed of beetles after dsTcTβH injection. We concluded that TcTβH controls the biosynthesis amount of OA in the CNS, and this in turn modulates the mobility of the beetles. Our new results provided basic information about the key genes in the OA biosynthesis pathway of the beetles, and expanded our knowledge on the physiological functions of OA in insects.
Collapse
Affiliation(s)
- Li Xu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Hong-Bo Jiang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Xiao-Feng Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Ying Xiong
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Xue-Ping Lu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Yu-Xia Pei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Guy Smagghe
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
- Department of Crop Protection, Ghent University, 9000 Ghent, Belgium.
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|