1
|
Wang Q, Lei Y, Lin H, Chen X, Mo W, Guan B, Deng H. Gonadal Transcriptomic Analysis Reveals Novel Sex-Related Genes in Bactrocera dorsalis. INSECTS 2024; 15:424. [PMID: 38921139 PMCID: PMC11203884 DOI: 10.3390/insects15060424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024]
Abstract
Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is one of the most devastating agricultural pests worldwide due to its high reproductive and invasive abilities. The elucidation of its gonadal developmental characteristics and the identification of sex-related genes will provide a useful genetic basis for reproductive-based pest control. Here, the gonadal transcriptome of B. dorsalis was sequenced, and novel gonad-specific expressed genes were analyzed. A total of 1338, 336, 35, and 479 differentially expressed genes (DEGs) were found in the testis (TE), ovary (OV), female accessory gland (FAG), and male accessory gland (MAG), respectively. Furthermore, 463 highly expressed gonad-specific genes were identified, with the TE having the highest number of specific highly expressed genes, at 402, followed by 51 in the OV, 9 in the MAG, and only 1 in the FAG. Strikingly, approximately half of highly expressed gonad-specific genes were uncharacterized. Then, it was found that 35, 17, 3, 2, and 1 of 202 uncharacterized highly expressed TE-specific genes encoded proteins that contained transmembrane domains, signal peptides, high-mobility group boxes, the zinc finger domain, and the BTB/POZ domain, respectively. Interestingly, approximately 40% of uncharacterized highly expressed gonad-specific genes encoding proteins were not predicted to possess functional motifs or domains. Finally, the spatiotemporal expression and sequence characterization of six novel highly expressed gonad-specific genes were analyzed. Altogether, our findings provide a valuable dataset for future functional analyses of sex-related genes and potential target sites for pest control.
Collapse
Affiliation(s)
- Qin Wang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yuxuan Lei
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Hongjie Lin
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoxin Chen
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wanyu Mo
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Boyang Guan
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Huimin Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Guangzhou 510631, China; (Q.W.); (Y.L.); (H.L.); (X.C.); (W.M.); (B.G.)
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
2
|
He J, Kang L. Regulation of insect behavior by non-coding RNAs. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1106-1118. [PMID: 38443665 DOI: 10.1007/s11427-023-2482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/26/2023] [Indexed: 03/07/2024]
Abstract
The adaptation of insects to environments relies on a sophisticated set of behaviors controlled by molecular and physiological processes. Over the past several decades, accumulating studies have unveiled the roles of non-coding RNAs (ncRNAs) in regulating insect behaviors. ncRNAs assume particularly pivotal roles in the behavioral plasticity of insects by rapidly responding to environmental stimuli. ncRNAs also contribute to the maintenance of homeostasis of insects by fine-tuning the expression of target genes. However, a comprehensive review of ncRNAs' roles in regulating insect behaviors has yet to be conducted. Here, we present the recent progress in our understanding of how ncRNAs regulate various insect behaviors, including flight and movement, social behavior, reproduction, learning and memory, and feeding. We refine the intricate mechanisms by which ncRNAs modulate the function of neural, motor, reproductive, and other physiological systems, as well as gene expression in insects like fruit flies, social insects, locusts, and mosquitos. Furthermore, we discuss potential avenues for future studies in ncRNA-mediated insect behaviors.
Collapse
Affiliation(s)
- Jing He
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
Li XL, Li DD, Cai XY, Cheng DF, Lu YY. Reproductive behavior of fruit flies: courtship, mating, and oviposition. PEST MANAGEMENT SCIENCE 2024; 80:935-952. [PMID: 37794312 DOI: 10.1002/ps.7816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/09/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Many species of the Tephritidae family are invasive and cause huge damage to agriculture and horticulture, owing to their reproductive characteristics. In this review, we have summarized the existing studies on the reproductive behavior of Tephritidae, particularly those regarding the genes and external factors that are associated with courtship, mating, and oviposition. Furthermore, we outline the issues that still need to be addressed in fruit fly reproduction research. The review highlights the implications for understanding the reproductive behavior of fruit flies and discusses methods for their integrated management and biological control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Lian Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Dou-Dou Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin-Yan Cai
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Dai-Feng Cheng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Sun Z, Liu J, Chen Y, Zhang J, Zhong G. RNAi-mediated knockdown of α-Spectrin depresses reproductive performance in female Bactrocera dorsalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 196:105611. [PMID: 37945250 DOI: 10.1016/j.pestbp.2023.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/12/2023]
Abstract
The female reproductive potential plays a crucial role in reproduction, population dynamics and population maintenance. However, the function of endogenous genes in undifferentiated germ cells has been largely unknown in Bactrocera dorsalis. In this study, the conservative analysis showed that α-Spectrin shared a similarity in B. dorsalis and other dipteral flies. Further, the differential expression of α-Spectrin was examined in B. dorsalis by RT-qPCR, and the expression pattern of α-Spectrin protein was identified in female adult ovaries by using immunostaining. During the development of ovary, the change on the number of undifferentiated germ cells was also characterized and analyzed. To understand the function of α-Spectrin in B. dorsalis ovary, the RNAi-based knockdown was conducted, and the RNAi efficiency was examined by RT-qPCR, western blot and bioassay. The results revealed that the α-Spectrin dsRNA could strikingly decrease the expression level of α-Spectrin in ovaries and diminish oviposition and ovary size as a consequence of downregulation of α-Spectrin. Overall, our study facilitates reproductive research on the function of conservative genes in B. dorsalis ovary, which may provide a new insight into seeking novel target genes for pest management control.
Collapse
Affiliation(s)
- Zhipeng Sun
- National Key Laboratory of Green Pesticide, PR China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, PR China.
| | - Jin Liu
- National Key Laboratory of Green Pesticide, PR China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, PR China.
| | - Yaoyao Chen
- National Key Laboratory of Green Pesticide, PR China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, PR China.
| | - Jing Zhang
- National Key Laboratory of Green Pesticide, PR China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, PR China.
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, PR China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, PR China.
| |
Collapse
|
5
|
Li H, Mo J, Wang X, Pan B, Xu S, Li S, Zheng X, Lu W. IPS (In-Plant System) Delivery of Double-Stranded Vitellogenin and Vitellogenin receptor via Hydroponics for Pest Control in Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Int J Mol Sci 2023; 24:ijms24119497. [PMID: 37298448 DOI: 10.3390/ijms24119497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Diaphorina citri, a vector of citrus huanglongbing (HLB) disease, frequently leads to HLB outbreaks and reduces Rutaceae crop production. Recent studies have investigated the effects of RNA interference (RNAi) targeting the Vitellogenin (Vg4) and Vitellogenin receptor (VgR) genes, which are involved in egg formation in this pest, providing a theoretical foundation for developing new strategies to manage D. citri populations. This study presents RNAi methods for Vg4 and VgR gene expression interference and reveals that dsVgR is more effective than dsVg4 against D. citri. We demonstrated that dsVg4 and dsVgR persisted for 3-6 days in Murraya odorifera shoots when delivered via the in-plant system (IPS) and effectively interfered with Vg4 and VgR gene expression. Following Vg4 and VgR gene expression interference, egg length and width in the interference group were significantly smaller than those in the negative control group during the 10-30-day development stages. Additionally, the proportion of mature ovarian eggs in the interference group was significantly lower than that in the negative control group at the 10, 15, 20, 25, and 30-day developmental stages. DsVgR notably suppresses oviposition in D. citri, with fecundity decreasing by 60-70%. These results provide a theoretical basis for controlling D. citri using RNAi to mitigate the spread of HLB disease.
Collapse
Affiliation(s)
- Hailin Li
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Junlan Mo
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaoyun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Biqiong Pan
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Shu Xu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Shuangrong Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xialin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Product Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
6
|
Jamil M, Ahmad S, Ran Y, Ma S, Cao F, Lin X, Yan R. Argonaute1 and Gawky Are Required for the Development and Reproduction of Melon fly, Zeugodacus cucurbitae. Front Genet 2022; 13:880000. [PMID: 35812742 PMCID: PMC9260231 DOI: 10.3389/fgene.2022.880000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Argonaute family genes encode a highly conserved group of proteins that have been associated with RNA silencing in both animals and plants. This study investigates the importance of microRNA biogenesis key regulators Argonaute1 (Ago1) and Gawky genes in the post-embryonic and ovarian development of the melon fly, Zeugodacus cucurbitae. The expression levels of these genes were mapped in all developmental stages and different adult tissues. Their roles in development were investigated using RNA interference (RNAi) via two different dsRNA delivery techniques. Embryo microinjection and oral feeding of third instar larvae successfully knocked down and greatly reduced the expression level of the target genes. Additionally, ex vivo essays revealed the stability of dsRNA in food was sufficient for gene silencing, although its integrity was affected in midgut. A wide range of phenotypes were observed on pupation, segmentation, pigmentation, and ovarian development. RNAi-mediated silencing of Gawky caused high mortality and loss of body segmentation, while Ago1 knockdown affected ovarian development and pigmentation. Developmental abnormalities and ovarian malformations caused by silencing these genes suggest that these genes are crucial for viability and reproductive capacity of Z. cucurbitae, and may be used as potential target genes in pest management.
Collapse
Affiliation(s)
- Momana Jamil
- School of Life Sciences, Hainan University, Haikou, China
| | - Shakil Ahmad
- School of Plant Protection, Hainan University, Haikou, China
| | - Yingqiao Ran
- School of Plant Protection, Hainan University, Haikou, China
| | - Siya Ma
- School of Life Sciences, Hainan University, Haikou, China
| | - Fengqin Cao
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| | - Xianwu Lin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
- *Correspondence: Xianwu Lin, ; Rihui Yan,
| | - Rihui Yan
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Plant Protection, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
- *Correspondence: Xianwu Lin, ; Rihui Yan,
| |
Collapse
|
7
|
Yang RL, Zhang Q, Fan JY, Yue Y, Chen EH, Yuan GR, Dou W, Wang JJ. RNA interference of Argonaute-1 delays ovarian development in the oriental fruit fly, Bactrocera dorsalis (Hendel). PEST MANAGEMENT SCIENCE 2021; 77:3921-3933. [PMID: 33884743 DOI: 10.1002/ps.6419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/03/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND With the development of rapid resistance, new modes of action for pesticides are needed for insect control, such as RNAi-based biopesticides targeting essential genes. To explore the function of Argonaute-1 (Ago-1) and potential miRNAs in ovarian development of Bactrocera dorsalis, an important agricultural pest, and to develop a novel control strategy for the pest, BdAgo-1 was first identified in B. dorsalis. RESULTS Spatiotemporal expression analysis indicated that BdAgo-1 had a relatively high transcriptional level in the ovarian tissues of adult female B. dorsalis during the sexual maturation period. RNA interference (RNAi) experiment showed that BdAgo-1 knockdown significantly decreased the expression levels of ovarian development-related genes and delayed ovarian development. Although RNAi-mediated silencing of Ago-1 led to a reduced ovary surface area, a subsequent oviposition assay revealed that the influence was minimal over a longer time period. Small RNA libraries were constructed and sequenced from different ovarian developmental stages of B. dorsalis adults. Among 161 identified miRNAs, 84 miRNAs were differentially expressed during the three developmental stages of the B. dorsalis ovary. BdAgo-1 silencing caused significant down-regulation of seven differentially expressed miRNAs (DEMs) showing relatively high expression levels (>1000 TPM (Transcripts per kilobase of exon model per million mapped reads)). The expression patterns of these seven core DEMs and their putative target genes were analyzed in the ovaries of B. dorsalis. CONCLUSION The results indicate that Ago-1 and Ago-1-dependent miRNAs are indispensable for normal ovarian development in B. dorsalis and help identify miRNA targets useful for control of this pest.
Collapse
Affiliation(s)
- Rui-Lin Yang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qiang Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jia-Yao Fan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yong Yue
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guo-Rui Yuan
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Fouks B, Brand P, Nguyen HN, Herman J, Camara F, Ence D, Hagen DE, Hoff KJ, Nachweide S, Romoth L, Walden KKO, Guigo R, Stanke M, Narzisi G, Yandell M, Robertson HM, Koeniger N, Chantawannakul P, Schatz MC, Worley KC, Robinson GE, Elsik CG, Rueppell O. The genomic basis of evolutionary differentiation among honey bees. Genome Res 2021; 31:1203-1215. [PMID: 33947700 PMCID: PMC8256857 DOI: 10.1101/gr.272310.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
In contrast to the western honey bee, Apis mellifera, other honey bee species have been largely neglected despite their importance and diversity. The genetic basis of the evolutionary diversification of honey bees remains largely unknown. Here, we provide a genome-wide comparison of three honey bee species, each representing one of the three subgenera of honey bees, namely the dwarf (Apis florea), giant (A. dorsata), and cavity-nesting (A. mellifera) honey bees with bumblebees as an outgroup. Our analyses resolve the phylogeny of honey bees with the dwarf honey bees diverging first. We find that evolution of increased eusocial complexity in Apis proceeds via increases in the complexity of gene regulation, which is in agreement with previous studies. However, this process seems to be related to pathways other than transcriptional control. Positive selection patterns across Apis reveal a trade-off between maintaining genome stability and generating genetic diversity, with a rapidly evolving piRNA pathway leading to genomes depleted of transposable elements, and a rapidly evolving DNA repair pathway associated with high recombination rates in all Apis species. Diversification within Apis is accompanied by positive selection in several genes whose putative functions present candidate mechanisms for lineage-specific adaptations, such as migration, immunity, and nesting behavior.
Collapse
Affiliation(s)
- Bertrand Fouks
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27403, USA
- Institute for Evolution and Biodiversity, Molecular Evolution and Bioinformatics, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Philipp Brand
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, Davis, California 95161, USA
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, New York 10065, USA
| | - Hung N Nguyen
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, USA
| | - Jacob Herman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27403, USA
| | - Francisco Camara
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
| | - Daniel Ence
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida 32611, USA
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Darren E Hagen
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Katharina J Hoff
- University of Greifswald, Institute for Mathematics and Computer Science, Bioinformatics Group, 17489 Greifswald, Germany
- University of Greifswald, Center for Functional Genomics of Microbes, 17489 Greifswald, Germany
| | - Stefanie Nachweide
- University of Greifswald, Institute for Mathematics and Computer Science, Bioinformatics Group, 17489 Greifswald, Germany
| | - Lars Romoth
- University of Greifswald, Institute for Mathematics and Computer Science, Bioinformatics Group, 17489 Greifswald, Germany
| | - Kimberly K O Walden
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Roderic Guigo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08036 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Mario Stanke
- University of Greifswald, Institute for Mathematics and Computer Science, Bioinformatics Group, 17489 Greifswald, Germany
- University of Greifswald, Center for Functional Genomics of Microbes, 17489 Greifswald, Germany
| | | | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, Utah 84112, USA
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Nikolaus Koeniger
- Department of Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, 97074 Würzburg, Germany
| | - Panuwan Chantawannakul
- Environmental Science Research Center (ESRC) and Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Michael C Schatz
- Departments of Computer Science and Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Gene E Robinson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Christine G Elsik
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri 65211, USA
- Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina 27403, USA
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
9
|
Hou QL, Chen EH, Xie YF, Dou W, Wang JJ. Ovary-Specific Transcriptome and Essential Role of Nanos in Ovary Development in the Oriental Fruit Fly (Diptera: Tephritidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:947-958. [PMID: 33537732 DOI: 10.1093/jee/toab004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Indexed: 06/12/2023]
Abstract
We used transcriptome analysis to research ovary development in Bactrocera dorsalis (Hendel). The ovary transcriptome of B. dorsalis yielded 66,463,710 clean reads that were assembled into 23,822 unigenes. After aligning to the Nr database in NCBI, 15,473 (64.95%) of the unigenes were matched to identified proteins. As determined by BLAST search, 11,043 (46.36%), 6,102 (25.61%), and 12,603 (52.90%) unigenes were each allocated to clusters via gene ontology, orthologous groups, and SwissProt, respectively. The Kyoto encyclopedia database of genes and genomes (KEGG) was further used to annotate these sequences, and 11,068 unigenes were mapped to 255 known pathways. Afterward, the genes that were possibly involved in oogenesis and ovary development were obtained from the transcriptome data and analyzed. Interestingly, seven ovary-specific genes were identified, including a Nanos gene that is involved in maintaining the primordial germ cells in many insects. Therefore, we further focused on the function of the BdNanos gene, and the gene was injected into B. dorsalis. As expected, the knocking down of Nanos gene expression led to significant inhibition of ovary development, suggesting an important role of this gene in the reproductive process of B. dorsalis. In summary, the present study provides an important reference for identifying the molecular mechanisms of oogenesis and ovary development in B. dorsalis. The BdNanos gene is crucial for ovary development in B. dorsalis and is therefore a potential new pest control target.
Collapse
Affiliation(s)
- Qiu-Li Hou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Er-Hu Chen
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Yi-Fei Xie
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Li HL, Wang XY, Zheng XL, Lu W. Research Progress on Oviposition-Related Genes in Insects. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:6047614. [PMID: 33367730 PMCID: PMC7759734 DOI: 10.1093/jisesa/ieaa137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 05/05/2023]
Abstract
Oviposition-related genes have remained a consistent focus of insect molecular biology. Previous research has gradually clarified our mechanistic understanding of oviposition-related genes, including those related to oviposition-gland-related genes, oogenesis-related genes, oviposition-site-selection-related genes, and genes related to ovulation and hatching. Moreover, some of this research has revealed how the expression of single oviposition-related genes affects the expression of related genes, and more importantly, how individual node genes function to link the expression of upstream and downstream genes. However, the research to date is not sufficient to completely explain the overall interactions among the genes of the insect oviposition system. Through a literature review of a large number of studies, this review provides references for future research on oviposition-related genes in insects and the use of RNAi or CRISPR/Cas9 technology to verify the functions of oviposition-related genes and to prevent and control harmful insects.
Collapse
Affiliation(s)
- Hai-Lin Li
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xiao-Yun Wang
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Xia-Lin Zheng
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Wen Lu
- Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
- Corresponding author, e-mail:
| |
Collapse
|
11
|
Effect of ovarian stimulation on the expression of piRNA pathway proteins. PLoS One 2020; 15:e0232629. [PMID: 32365144 PMCID: PMC7197780 DOI: 10.1371/journal.pone.0232629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) play an important role in gametogenesis, fertility and embryonic development. The current study investigated the effect of different doses of pregnant mare serum gonadotrophin/human chorionic gonadotrophin (PMSG/hCG) and repeated ovarian stimulation (OS) on the expression of the Mili, Miwi, Mael, Tdrd1, Tdrd9, qnd Mitopld genes, which have crucial roles in the biogenesis and function of piRNAs. Here, we found that after treatment with 7.5 I.U. PMSG/hCG and two repeated rounds of OS, both the mRNA and protein levels of Tdrd9, Tdrd1 and Mael showed the greatest decrease in the ovarian tissue, but the plasma E2 levels showed the strongest increases (p<0.05). However, we found that the Mitopld, Miwi and Mili gene levels were decreased significantly after treatment with 12.5 I.U. PMSG/hCG. Our results suggested that exogenous gonadotropin administration leads to a significant decrease in the expression of the Mili, Miwi, Mael, Tdrd1, Tdrd9 and Mitopld genes, which are critically important in the piRNA pathway, and the changes in the expression levels of Tdrd9, Tdrd1 and Mael may be associated with plasma E2 levels. New comprehensive studies are needed to reduce the potential effects of OS on the piRNA pathway, which silences transposable elements and maintains genome integrity, and to contribute to the safety of OS.
Collapse
|